Coding Standards for C

Version 2.0
Why have coding standards?

It is a known fact that 80% of the lifetime cost of a piece of software goes to maintenance. Therefore it makes sense for all programs within an organization to be as consistent as possible. Code conventions also improve the readability of the software.

This document specifies the coding standards for all Computer Science courses at Pacific University that use the C programming language. It is important for you to adhere to these standards in order to receive full credit on your assignments.

This document is divided into three main sections:

· Naming Conventions

· Formatting

· Comments

· Printing

Naming Conventions

Constants

A constant is to be mnemonically defined using all capital letters and underscores such as MAX_NAME_CHARS. Further, your program is to contain no "magic constants." That is, all magic constants must be #defined to make program modification easier. In the case below, 100 is a magic constant and if used in several places throughout a program, can create problems if 100 is to be modified for any reason.

Poor Program Style

input = fopen ("scores.dat", "r");

.....

for (indx = 0; indx < 100; indx++)

{

.....

}

Correct Program Style

#define MAX_SCORES 100

#define SCORES_FILE "scores.dat"

pScoresFile = fopen (SCORES_FILE, "r");

.....

for (indx = 0; indx < MAX_SCORES; indx++)

{

.....

}

Notice: Constants like 0 and 1 are usually acceptable unless they represent values such as true and false in which case they should be #defined.

Variable Names

1) A variable name is defined in all lowercase letters unless the variable name contains multiple names such as studentRecord. After the first word, each subsequent word has the first letter capitalized with the remainder of the word made up of lowercase letters.

2) Variable names are to be mnemonic unless the variable is being used in a for loop in which case the names i, j, k, l, m, n are acceptable names to be used. If however the nested loop is being used in conjunction with a two-dimensional array, then the names row and col should be used.

3) Global variables must begin with g so that a name such as gHashTable denotes a global variable.

4) Function names will begin with the name of the module in which they are found. Module names are to be either two or three letters. The example below shows that the module name is stk which stands for stack. Function stkPush can be found in the module stk.

5) To aid in identifying the type of a variable, we will use the following prefixes.

	Type Indicator is a
	Text Prefix
	Variable Name Example

	boolean
	b
	bFlag

	pointer
	p
	char *pName

	handle
	h
	void **hWindow

	null terminated string
	sz
	char pszFileName

	structure
	s
	Home sPerson

	function
	stk
	stkPush

	globals
	g
	char gNumFiles

Poor Program Style

int L (char *n)

{

 int i;

 for (i = 0; *(n + i) != '\0'; i++)

 {

 }

 return i;

}

Good Program Style

int strLength (char *pszStr)

{

 int count;

 for (count = 0; *(pszStr + count) != '\0')

 {

 }

 return count;

}

Struct Names

Struct definitions will follow the regular variable naming conventions except the first letter of the struct must be capitalized. Further, struct definitions are to exist in a header file (.h file) associated with the .c source file associated with the project.

Poor Program Style for Structs

typedef struct t

{

 int d;

 int h;

 int m;

 int s;

} t;

Good Program Style for Structs

typedef struct Time

{

 int days;

/* Range (0-7) */

 int hours;

/* Range (0-23) */

 int minutes;

/* Range (0-59) */

 int seconds;

/* Range (0-59) */

} Time;

Implementation Example

The first file is a .h file that contains the definitions of the library. The second file is a .c file that contains the actual implementation of the functions included in the library definition. The .c file includes the .h file at the top of the file.

Rational Example

/**

 File name: rat.h

 Author: Joe Bloggs

 Date: 09/07/2004

 Class: CS300

 Assignment: Rational

 Purpose: Header file for implementing rational

 numbers*

***/

#ifndef RAT_H

#define RAT_H

#ifdef __cplusplus

extern "C" {

#endif

typedef struct Rational

{

 int numerator; /* rational number's numerator */

 int denominator; /* rational number's denominator */

} Rational;

extern void ratPrint (Rational);

extern void ratSet (Rational *, int, int);

extern int ratIsEqual (Rational, Rational);

extern Rational ratMultiply (Rational, Rational);

#ifdef __cplusplus

}

#endif

#endif

/**

 File name: rat.c

 Author: Joe Bloggs

 Date: 09/07/2004

 Class: CS300

 Assignment: Rational

 Purpose: This is the implementation file for each

 of the rational functions associated with

 the module rat.c

**/

#include <stdio.h>

#include "rat.h"

/***

 Function: ratPrint

 Description: Outputs a fraction in the form

 numerator / denominator to the screen

 Parameters: sRational - a fraction to be printed

 Returned: None

***/

void ratPrint (Rational sRational)

{

 printf ("%d / %d", sRational.numerator,

 sRational.denominator);

}

/***

 Function: ratSet

 Description: Initializes a fraction to the values of

 the numberator and denominator passed in.

 Parameters: sRational - a fraction

 numerator - numerator initialization value

 denominator - denominator initialization value

 Returned: None

***/

void ratSet (Rational *sRational, int numerator, int denominator)

{

sRational->numerator = numerator;

sRational->denominator = denominator;

}

/***

 Function: ratIsEqual

 Description: Compares two fractions returning

 a value of true if the numerators and

 denominators of both fractions are the

 same.

 Parameters: sRational1 - first fraction used in comparison

 sRational2 - second fraction used in comparison

 Returned: true if objects are equal; else, false

**/

int ratIsEqual (Rational sRational1, Rational sRational2)

{

 return ((sRational1.numerator == sRational2.numerator) &&

 (sRational1.denominator == sRational2.denominator));

}

/***

 Function: ratMultiply

 Description: Multiples the numerators and denominators

 of two fractions.

 Parameters: sRational1 - first rational number

 sRational2 - second rational number

 Returned: A fraction that contains the result of the

 multiplication.

**/

Rational ratMultiply (Rational sRational1, Rational sRational2)

{

 Rational sFraction;

 ratSet (&sFraction, 0, 0);

 sFraction.numerator = sRational1.numerator * sRational2.numerator;

 sFraction.denominator = sRational1.denominator *

 sRational2.denominator;

 return sFraction;

}

Formatting

Indentation

Two spaces must be used as the unit of indentation per tab. Every IDE (Integrated Development Environment) such as CodeWarrior, Visual Studio, Visual .NET includes an option for changing the number of spaces in a tab. These can usually be found in the preferences section.

Line Length

Lines must be no longer than 80 characters. Anything longer than that is normally not handled well in many terminals and tools.

Wrapping Lines

If an expression cannot fit on a single line then break it:

· After a comma

· Before an operator

Make sure that the new line is aligned with the beginning of the expression at the same level on the previous line.

Spaces

All arithmetic and logical operators must have one space before and after the operator. The only exceptions are:

· Unary operators

· The period

· No spaces before the comma and only one space after the comma

Blank Lines

Use blank lines to separate distinct pieces of code. For example, separating the #includes from the rest of the program and breaking up long sections of code into logical units. The important thing to remember is that blank lines must be used consistently.

Braces

Any curly braces that you use in your program (e.g. surrounding structs, functions) must appear on their own lines. Any code within the braces must be indented relative to the braces.

typedef struct Rational

{

 int numerator; /* fraction's numerator */

 int denominator; /* fraction's denominator */

} Rational;

Comments

Comments should be used to explain the purpose of the code fragment they are grouped with. Comments should state what the code is doing, while the code itself shows how you are doing it.

Use comments sparingly and only comment code segments that are not obvious. Giving your variables meaningful names will improve the readability of your code and reduce the need for comments.

File Header

The main purpose of a file header is to explain the purpose of the program as briefly as possible. You must include the following sections in your program header:

· File name

· Your name

· Date

· Class and Assignment Title

· Purpose

· Input

/**

 File name: main.c

 Author: Joe Bloggs

 Date: 09/07/2004

 Class: CS300

 Assignment: Rational

 Purpose: This program is the driver to test the rational

 library of functions.

 Input: All input is hard coded

**/

#include "stdio.h"

#include "rat.h"

int main(int argc, char* argv[])

{

 Rational sRational1, sRational2;

 ratSet (&sRational1, 1, 2);

 ratSet (&sRational2, 2, 4);

 ratPrint (sRational1);

 printf ("\n");

 ratPrint (sRational2);

 printf ("\n");

 printf ("%i\n", ratIsEqual (sRational1, sRational2));

 printf ("\n");

 ratPrint (ratMultiply (sRational1, sRational2));

 printf ("\n");

 return 0;

}

Declaration Comments

Variables should be declared one per line. Each variable must have a sidebar comment to the right indicating the variable’s purpose. Do not put any blank lines between the variables being declared. You must also group together variables that are related.

int seconds;

 /* Range (0-59) */

int minutes;

 /* Range (0-59) */

int hours
;

 /* Range (0-23) */

char *pszFirstName;

/* First name of employee */

char *pszLastName;

/* Last name of employee */

Function Header

In the same way that a program header is used to describe the purpose of the program, the function header is used to describe the purpose of the function. All your function headers must include the following:

· Function name

· Description

· Parameters

· Returned

/***

 Function: ratSet

 Description: Initializes a fraction to the values of

 the numberator and denominator passed in.

 Parameters: sRational - a fraction

 numerator - numerator initialization value

 denominator - denominator initialization value

 Returned: None

***/

void ratSet (Rational *sRational, int numerator, int denominator)

{

 sRational->numerator = numerator;

 sRational->denominator = denominator;

}

Sidebar and In-line Comments

A sidebar comment appears on the same line as the single statement it is describing. The comment must be brief and not exceed that line.

value <<= 1; /* multiply value by 2 */

In-line comments appear on their own lines and precede the segment of code they describe. You should use in-line comments to describe complex code that is not limited to a single statement. You must use blank lines to separate the comments from the segments of code they are describing.

/* If the file exists, open the input file for reading */

if (pInFile = fopen (SCORES_FILE, "r") != NULL)

{

}

Although using comments helps in describing your code, you must always make sure that your variables have meaningful names to make the code more understandable.

Printing

When printing your code you must use a fixed width font. Courier and Courier New are examples of fixed width fonts. You must also make sure that your lines do not wrap nor do they get cut off when printing. All printing is to be done in Portrait and the printing order for the files is as follows:

1) the program file containing main

2) header (.h) / implementation (.c) pairs for each libarary

Note: Each library is to have a separate .h and .c file.

