
CS430 Computer Architecture

Spring 2015

Spring 2015 CS430 - Computer Architecture 1

More Pipeline Hazards

 pipeline hazard (pipeline bubble) – occurs when
some portion of the pipeline must stall because
execution cannot continue

 resource hazard (structural hazard)

Spring 2015 CS430 - Computer Architecture 2

Cycle 3 assumes FO is from memory so FI
of I3 must be delayed. All other operands
are assumed to be in registers

Data Hazards

 data hazard – conflict in the access of an operand
location

 RAW (Read After Write) – “true dependency” instruction
i+1 needs the result written by instruction i. The hazard
occurs if instruction i+1 reads BEFORE instruction i writes

 WAR (Write After Read) – “antidependency” instruction i
reads from a location and instruction i+1 writes to the
same location. The hazard occurs if instruction i+1 writes
BEFORE instruction i has read from the same location

 WAW (Write After Write) – “output dependency”
instructions i and i+1 write to the same location. The
hazard occurs if the write occurs in reverse order

Spring 2015 CS430 - Computer Architecture 3

Control Hazard

 control hazard (branch hazard) – pipeline makes
the wrong decision on a branch prediction

 can cause greater performance loss that a data hazard

 branch may or may not change the PC

 taken - branch changes PC to target

 not taken (untaken) - execution falls through

Spring 2015 CS430 - Computer Architecture 4

Control Hazard

 Dealing with Branches

 Stall Until Target Known

 Multiple Streams

 Prefetch branch target

 Loop Buffer

 Branch Prediction

 Delayed Branch

Spring 2015 CS430 - Computer Architecture 5

Stall Until Target Known
Aggressive

branch instr (i) IF ID EX M WB

instr i+1 IF IF ID EX M WB

instr i+2 IF ID EX M WB

Aggressive means during ID

• decode instr

• read registers

• do equality test on registers for possible branch

• sign extend offset field if needed

• compute branch target if needed

The second IF of instr i+1 might be redundant but the branch penalty is 1
cycle

Spring 2015 CS430 - Computer Architecture 6

Multiple Streams

 Replicate the initial portions of the pipeline for
the target instruction and the instruction
following the branch

 Disadvantages:

 Contention delays for access to registers and memory

 Additional branch instructions may enter the pipeline

 IBM 370/168 & IBM 3033 have two or more
pipeline streams

Spring 2015 CS430 - Computer Architecture 7

Prefetch Branch Target

 The target is prefetched in addition to the
instruction following the branch.

 If the branch is taken the target is fetched.

 IBM 360/91 uses this approach

Spring 2015 CS430 - Computer Architecture 8

Loop Buffer

 Very high speed memory maintained by the
instruction fetch stage

 Contains 𝑛 most recently fetched instructions

 If the branch is taken, the loop buffer is first
checked

Spring 2015 CS430 - Computer Architecture 9

Loop Buffer

 The least significant 8-bits are used to index the
buffer

 The remaining bits are the tag to see if the branch
target is actually in the buffer

Spring 2015 CS430 - Computer Architecture 10

Loop Buffer

 Assuming the Loop Buffer works with Physical
Addresses

1. What is the branch address if the jump is taken?

2. What is the branch address if the jump is not taken?

3. What is the address index?

4. What is the tag?

Spring 2015 CS430 - Computer Architecture 11

13CF:0100 B80000 MOV AX,0000

13CF:0103 BB0000 MOV BX,0000

13CF:0106 40 INC AX

13CF:0107 01C3 ADD BX,AX

13CF:0109 3D0A00 CMP AX,000A

13CF:010C 75F8 JNZ 0106

13CF:010E 90 NOP

Loop Buffer

 Advantages

1. Useful for dealing with code iteration as the
instructions will be in the loop after the first iteration

2. If the branch is a few instructions ahead, which is the
case with several IF-THEN type statements, the target
is already in the buffer.

 CDC computers, CRAY-1

Spring 2015 CS430 - Computer Architecture 12

Branch Prediction

 Predict never taken

 Predict always taken

 Predict by opcode

 Taken/Not Taken switch

 Branch history table

Spring 2015 CS430 - Computer Architecture 13

Predict Never Taken

 Predict never taken (static approach used by 68020, VAX 11/780)

 Note: If the instruction following the branch would cause a page fault
or protection violation, the next instruction is not fetched.

 Studies analyzing program behavior show that conditional branches
are taken more than 50% of the time.

 It depends on whether we are branching forward or backward:

 backward: 90% probability that it is taken

 forward: IFs 50% probability taken

Spring 2015 CS430 - Computer Architecture 14

Predict

 Always Taken (static)

 By opcode (static)

 Prefetch decision is based on the branch’s opcode

 In some cases, success rates are as high as 75%

Spring 2015 CS430 - Computer Architecture 15

Taken/Not Taken Switch

Spring 2015 CS430 - Computer Architecture 16

