
CS430 Computer Architecture

Spring 2015

Spring 2015 CS430 - Computer Architecture 1

Chapter 12
Instruction Sets: Characteristics and

Functions

 Section 12.1 pp. 406-412

 Machine Instruction Characteristics

 We have already learned that an instruction is
composed of a series of bytes where a portion of
the instruction is for the opcode and the other
portion is for one or more operands.

 Simple opcodes include: ADD, SUB, MUL, DIV,
MOV, ...

Spring 2015 CS430 - Computer Architecture 2

Instruction Format

 An instruction format might be:

Spring 2015 CS430 - Computer Architecture 3

Elements of an Instruction

 Operation code (Op code)
— Do this

 Source Operand reference
— To this

 Result Operand reference
— Put the answer here

 Next Instruction Reference
— When you have done that, do this...

Spring 2015 CS430 - Computer Architecture 4

Elements of an Instruction

 We have spent most of our time in the high-level
programming world. A high-level language must
eventually be translated into some kind of machine
language usually through some assembly language.

 Machine language instructions typically fall into one of
four categories:

 Data Processing: Arithmetic and logical instructions

 Data Storage: Memory instructions

 Data Movement: I/O instructions

 Program Flow Control: Test and branch instructions

 Spring 2015 CS430 - Computer Architecture 5

Processor Architectures

 Historically, processor architectures have been defined
in terms of the number of addresses contained within
the instruction.

 Three Addresses

 Operand1, Operand2, Result OR
Result, Operand1, Operand2

 a = b + c;

 Maybe a fourth - next instruction (usually implicit)

 Not common

 Needs very long words to hold everything

Spring 2015 CS430 - Computer Architecture 6

Processor Architectures

 Two Addresses

 One address doubles as operand and result

 a = a + b

 Reduces length of instruction

 Requires some extra work

 Temporary storage to hold some results

Spring 2015 CS430 - Computer Architecture 7

Processor Architectures

 One Address

 Implicit second address

 Usually a register (accumulator)

 Common on early machines

Spring 2015 CS430 - Computer Architecture 8

Processor Architectures

 Zero Address

 zero addresses can be used for some instructions

 uses a stack

Spring 2015 CS430 - Computer Architecture 9

Program to Execute

 𝑌 =
𝐴−𝐵

𝐶+(𝐷∙𝐸)
 (3 address)

Spring 2015 CS430 - Computer Architecture 10

Program to Execute

 𝑌 =
𝐴−𝐵

𝐶+(𝐷∙𝐸)
 (2 address)

Spring 2015 CS430 - Computer Architecture 11

Program to Execute

 𝑌 =
𝐴−𝐵

𝐶+(𝐷∙𝐸)
 (1 address)

Spring 2015 CS430 - Computer Architecture 12

Program to Execute

 𝑌 =
𝐴−𝐵

𝐶+(𝐷∙𝐸)

 What would the assembly language look like for
the above equation using a stack architecture?

Spring 2015 CS430 - Computer Architecture 13

Number of Addresses Symbolic Representation Interpretation

3 OP A, B, C A B OP C

2 OP A, B A A OP B

1 OP A AC AC OP A

0 OP T (T – 1) OP T

Instruction Set Design

 When designing an instruction set, consider

 Operation repertoire

 How many ops?

 What can they do?

 How complex are they?

 Data types

 Instruction formats

 Length of op code field

 Registers

 Number of CPU registers available

 Which operations can be performed on which registers?

 Addressing modes

 RISC v CISC

Spring 2015 CS430 - Computer Architecture 14

Types of Operands

 Reading pp. 413-418

 We know that the processor operates on data. General categories of data are:

 Addresses

 Numbers

 Binary integer (or binary fixed point)

 Binary floating point

 Decimal (packed decimal)

 Characters

 ASCII etc.

 Logical Data

 Bits or flags

Spring 2015 CS430 - Computer Architecture 15

x86 Data Types

 8 bit Byte

 16 bit word

 32 bit double word

 64 bit quad word

 128 bit double quadword

 Addressing is by 8 bit unit

 Words do not need to align at even-numbered address

 Data accessed across 32 bit bus in units of double word read
at addresses divisible by 4

 Little endian

Spring 2015 CS430 - Computer Architecture 16

x86 Data Types

Spring 2015 CS430 - Computer Architecture 17

x86 Data Types

Spring 2015 CS430 - Computer Architecture 18

x86 Data Types

Spring 2015 CS430 - Computer Architecture 19

x86 Data Types

Spring 2015 CS430 - Computer Architecture 20

x86 Data Types

 The Pentium does not require that word, double-words, or
quad-words be aligned on any particular boundary; however, if
data is accessed across a 32-bit bus, data transfers take place
in 32-bit quantities beginning with an address divisible by 4. If
data is not aligned on such a boundary, then multiple transfers
are needed to get the data.

 The Pentium floating-point numbers conform to the IEEE 754
standard.

 Pentium data is stored using little-endian style which means
that the least significant byte is stored in the lowest address.

 For the C declaration int intVal = -10; show what memory
would look like if the variable intVal is located at memory
location 1000. Use HEX notation.

Spring 2015 CS430 - Computer Architecture 21

ARM Data Types

 8 (byte), 16 (halfword), 32 (word) bits

 Halfword and word accesses should be word aligned

 Nonaligned access alternatives

 Unsigned integer interpretation supported for all types

 Twos-complement signed integer interpretation supported for all types

 Majority of implementations do not provide floating-point hardware

 Saves power and area

 Floating-point arithmetic implemented in software

 Optional floating-point coprocessor

 Single- and double-precision IEEE 754 floating point data types

Spring 2015 CS430 - Computer Architecture 22

ARM Supports Big-Endian

Spring 2015 CS430 - Computer Architecture 23

ARM Supports Little-Endian

Spring 2015 CS430 - Computer Architecture 24

