CS430 Computer Architecture

Spring 2015

Spring 2015 CS430 - Computer Architecture

Chapter 12
Instruction Sets: Characteristics and
Functions

Section 12.1 pp. 406-412
Machine Instruction Characteristics

We have already learned that an instruction is
composed of a series of bytes where a portion of
the instruction is for the opcode and the other
portion is for one or more operands.

Simple opcodes include: ADD, SUB, MUL, DIV,
MOV, ...

Instruction Format

« An instruction format might be:

Spring 2015

4 bits

6 bits

6 bits

Opcode

Operand Reference

Operand Reference

16 bits

CS430 - Computer Architecture

»

Elements of an Instruction

o Operation code (Op code)
— Do this

« Source Operand reference
— To this

« Result Operand reference
— Put the answer here

 Next Instruction Reference
— When you have done that, do this...

Spring 2015 CS430 - Computer Architecture

Elements of an Instruction

« We have spent most of our time in the high-level
programming world. A high-level language must
eventually be translated into some kind of machine
language usually through some assembly language.

« Machine language instructions typically fall into one of
four categories:

» Data Processing: Arithmetic and logical instructions
» Data Storage: Memory instructions

» Data Movement: I/O instructions

» Program Flow Control: Test and branch instructions

Processor Architectures

« Historically, processor architectures have been defined
in terms of the number of addresses contained within
the instruction.

o Three Addresses

» Operandl, Operand2, Result OR
Result, Operandl, Operand2

>»a=Db+c;

» Maybe a fourth - next instruction (usually implicit)
» Not common

> Needs very long words to hold everything

Processor Architectures

o Two Addresses
» One address doubles as operand and result
a=a+b
» Reduces length of instruction
> Requires some extra work

» Temporary storage to hold some results

Spring 2015 CS430 - Computer Architecture

Processor Architectures

e One Address

» Implicit second address
» Usually a register (accumulator)

» Common on early machines

Spring 2015 CS430 - Computer Architecture

Processor Architectures

o Zero Address
» zero addresses can be used for some instructions

» uses a stack

Spring 2015 CS430 - Computer Architecture

Program to Execute

o ¥V =— (D 5 (3 address)
Instruction Comment
SUB Y.A.B Y—A-B
MPY T.D.E T—DxE
ADD T.T.C T—T+C
DIV Y Y. T Y —Y-=T

Spring 2015 CS430 - Computer Architecture

Program to Execute

o Y = — (D B (2 address)
Instruction Comment
MOVE Y. A Y <— A
SUB Y.B Y—Y-B
MOVE T.D T<D
MPY T.E T—TxE
ADD T.C T—T+C
DIV Y. T Y —Y-=T

Program to Execute

o ¥ =— (D B (1 address)
Instruction Comment
LOAD D AC<D
MPBEY E AC— AC xE
ADD C AC<— AC+C
STOR Y Y — AC
LOAD A AC<— A
SUB B AC<— AC-B
DIV Y AC—ACY
STOR Y Y — AC

Spring 2015 CS430 - Computer Architecture

Program to Execute

. vy = _AB
C+(DE)
Number of Addresses Symbolic Representation Interpretation
3 OP A,B,C A« BOPC
2 OPA,B A < AOPB
1 OP A AC <« ACOP A
0 0] T« (T-1)OPT

« What would the assembly language look like for
the above equation using a stack architecture?

Instruction Set Design

« When designing an instruction set, consider
o Operation repertoire
> How many ops?
> What can they do?
> How complex are they?
o« Data types
o Instruction formats
> Length of op code field
o Registers
> Number of CPU registers available
> Which operations can be performed on which registers?
o Addressing modes
o RISC v CISC

Spring 2015 CS430 - Computer Architecture 14

Types of Operands

« Reading pp. 413-418
« We know that the processor operates on data. General categories of data are:

o Addresses
e Numbers
> Binary integer (or binary fixed point)
> Binary floating point
» Decimal (packed decimal)
o Characters
» ASCII etc.
o Logical Data
> Bits or flags

Spring 2015 CS430 - Computer Architecture

15

x86 Data Types

8 bit Byte

« 16 bit word

o 32 bit double word

o« 64 bit quad word

o 128 bit double quadword

« Addressing is by 8 bit unit

« Words do not need to align at even-numbered address

» Data accessed across 32 bit bus in units of double word read
at addresses divisible by 4

o Little endian

Spring 2015 CS430 - Computer Architecture 16

x86 Data Types

Data Type Description

General Byte, word (16 bits), doubleword (32 bits), quadword (64 bits),
and double quadword (128 bits) locations with arbitrary binary
contents.

Integer A signed binary value co4ntained in a byte, word, or doubleword,
using twos complement representation.

Ordinal An unsigned integer contained in a byte, word, or doubleword.

Unpacked binary coded A representation of a BCD digit in the range 0 through 9, with one

decimal (BCD) digit in each byte.
Packed BCD Packed byte representation of two BCD digits; value in the range 0

Near pointer

to 99.

A 16-bit, 32-bit, or 64-bit effective address that represents the
offset within a segment. Used for all pointers in a nonsegmented
memory and for references within a segment in a segmented
MeEMmory.

x86 Data Types

Far pointer

Bit field

Bit string
Byte string
Floating point

Packed SIMD (single
instruction, multiple data)

A logical address consisting of a 16-bit segment selector and an
offset of 16, 32, or 64 bits. Far pointers are used for memory
references in a segmented memory model where the identity of a
segment being accessed must be specified explicitly.

A contiguous sequence of bits in which the position of each bit is
considered as an independent unit. A bit string can begin at any bit
position of any byte and can contain up to 32 bits.

A contiguous sequence of bits, containing from zero to 232 — 1
bits.

A contiguous sequence of bytes, words, or doublewords,
containing from zero to 232 — 1 bytes.

See Figure 12 4.
Packed 64-bit and 128-bit data types

x86 Data Types

7 0

15 0

31 0

63 0
twos comp

7 0

Spring 2015

twos comp

15 0

Byte unsigned integer

Word unsigned integer

Doubleword unsigned integer

Quadword unsigned integer

Byte signed integer

Word unsigned integer

CS430 - Computer Architecture 19

x86 Data Types

twos complement I

31 0

twos complement I

63 0

sign bat
exp sigmificand I
31 0
sign bit

exp significand I

63 51 0

sign bit integer bit

exponent significand I

79 63 0

Spring 2015

CS430 - Computer Architecture

Doubleword unsigned integer

Quadward unsigned integer

Single precision
floating point

Double precision
floating point

Double extended precision
floating point

x86 Data Types

The Pentium does not require that word, double-words, or
uad-words be aligned on any particular boundary; however, if
ata is accessed across a 32-bit bus, data transfers take place

in 32-bit quantities beginning with an address divisible by 4. If

data is not aligned on such a boundary, then multiple transfers
are needed to get the data.

The Pentium floating-point numbers conform to the IEEE 754
standard.

Pentium data is stored using little-endian style which means
that the least significant byte is stored in the lowest address.

For the C declaration int intVal = -10; show what memory
would look like if the variable intVal is located at memory
location 1000. Use HEX notation.

ARM Data Types

« 8 (byte), 16 (halfword), 32 (word) bits

« Halfword and word accesses should be word aligned

« Nonaligned access alternatives

« Unsigned integer interpretation supported for all types

« Twos-complement signed integer interpretation supported for all types

« Majority of implementations do not provide floating-point hardware
» Saves power and area
» Floating-point arithmetic implemented in software
» Optional floating-point coprocessor
» Single- and double-precision IEEE 754 floating point data types

Spring 2015 CS430 - Computer Architecture 22

ARM Supports Big-Endian

Spring 2015

Fegister
Memory OAOBOCOD

a: UA(—J

atl: OB -«—

at+2:|0C| ==
a+3:|0D| -
: Big-endian
CS430 - Computer Architecture 23

ARM Supports Little-Endian

Fegister
OAOBOCOD Memory

—» q|0D
— > a+1:|0C

—» a+2:/0B
> a+3:|0A

Little-endian

Spring 2015 CS430 - Computer Architecture

