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Chapter 12
Instruction Sets: Characteristics and
Functions

Section 12.1 pp. 406-412
Machine Instruction Characteristics

We have already learned that an instruction is
composed of a series of bytes where a portion of
the instruction is for the opcode and the other
portion is for one or more operands.

Simple opcodes include: ADD, SUB, MUL, DIV,
MOV, ...



Instruction Format

« An instruction format might be:
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4 bits

6 bits

6 bits

Opcode

Operand Reference

Operand Reference

16 bits
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Elements of an Instruction

o Operation code (Op code)
— Do this

« Source Operand reference
— To this

« Result Operand reference
— Put the answer here

 Next Instruction Reference
— When you have done that, do this...
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Elements of an Instruction

« We have spent most of our time in the high-level
programming world. A high-level language must
eventually be translated into some kind of machine
language usually through some assembly language.

« Machine language instructions typically fall into one of
four categories:

» Data Processing: Arithmetic and logical instructions
» Data Storage: Memory instructions

» Data Movement: I/O instructions

» Program Flow Control: Test and branch instructions



Processor Architectures

« Historically, processor architectures have been defined
in terms of the number of addresses contained within
the instruction.

o Three Addresses

» Operandl, Operand2, Result OR
Result, Operandl, Operand2

>»a=Db+c;

» Maybe a fourth - next instruction (usually implicit)
» Not common

> Needs very long words to hold everything



Processor Architectures

o Two Addresses
» One address doubles as operand and result
a=a+b
» Reduces length of instruction
> Requires some extra work

» Temporary storage to hold some results
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Processor Architectures

e One Address

» Implicit second address
» Usually a register (accumulator)

» Common on early machines
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Processor Architectures

o Zero Address
» zero addresses can be used for some instructions

» uses a stack

Spring 2015 CS430 - Computer Architecture



Program to Execute

o ¥V =— (D 5 (3 address)
Instruction Comment
SUB Y.A.B Y—A-B
MPY T.D.E T—DxE
ADD T.T.C T—T+C
DIV Y Y. T Y —Y-=T
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Program to Execute

o Y = — (D B (2 address)
Instruction Comment
MOVE Y. A Y <— A
SUB Y.B Y—Y-B
MOVE T.D T<D
MPY T.E T—TxE
ADD T.C T—T+C
DIV Y. T Y —Y-=T




Program to Execute

o ¥ =— (D B (1 address)
Instruction Comment
LOAD D AC<D
MPBEY E AC— AC xE
ADD C AC<— AC+C
STOR Y Y — AC
LOAD A AC<— A
SUB B AC<— AC-B
DIV Y AC—ACY
STOR Y Y — AC
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Program to Execute

. vy = _AB
C+(DE)
Number of Addresses Symbolic Representation Interpretation
3 OP A,B,C A« BOPC
2 OPA,B A < AOPB
1 OP A AC <« ACOP A
0 0] T« (T-1)OPT

« What would the assembly language look like for
the above equation using a stack architecture?



Instruction Set Design

« When designing an instruction set, consider
o Operation repertoire
> How many ops?
> What can they do?
> How complex are they?
o« Data types
o Instruction formats
> Length of op code field
o Registers
> Number of CPU registers available
> Which operations can be performed on which registers?
o Addressing modes
o RISC v CISC
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Types of Operands

« Reading pp. 413-418
« We know that the processor operates on data. General categories of data are:

o Addresses
e Numbers
> Binary integer (or binary fixed point)
> Binary floating point
» Decimal (packed decimal)
o Characters
» ASCII etc.
o Logical Data
> Bits or flags
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x86 Data Types

8 bit Byte

« 16 bit word

o 32 bit double word

o« 64 bit quad word

o 128 bit double quadword

« Addressing is by 8 bit unit

« Words do not need to align at even-numbered address

» Data accessed across 32 bit bus in units of double word read
at addresses divisible by 4

o Little endian
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x86 Data Types

Data Type Description

General Byte, word (16 bits), doubleword (32 bits), quadword (64 bits),
and double quadword (128 bits) locations with arbitrary binary
contents.

Integer A signed binary value co4ntained in a byte, word, or doubleword,
using twos complement representation.

Ordinal An unsigned integer contained in a byte, word, or doubleword.

Unpacked binary coded A representation of a BCD digit in the range 0 through 9, with one

decimal (BCD) digit in each byte.
Packed BCD Packed byte representation of two BCD digits; value in the range 0

Near pointer

to 99.

A 16-bit, 32-bit, or 64-bit effective address that represents the
offset within a segment. Used for all pointers in a nonsegmented
memory and for references within a segment in a segmented
MeEMmory.



x86 Data Types

Far pointer

Bit field

Bit string
Byte string
Floating point

Packed SIMD (single
instruction, multiple data)

A logical address consisting of a 16-bit segment selector and an
offset of 16, 32, or 64 bits. Far pointers are used for memory
references in a segmented memory model where the identity of a
segment being accessed must be specified explicitly.

A contiguous sequence of bits in which the position of each bit is
considered as an independent unit. A bit string can begin at any bit
position of any byte and can contain up to 32 bits.

A contiguous sequence of bits, containing from zero to 232 — 1
bits.

A contiguous sequence of bytes, words, or doublewords,
containing from zero to 232 — 1 bytes.

See Figure 12 4.
Packed 64-bit and 128-bit data types




x86 Data Types

7 0

15 0

31 0

63 0
twos comp

7 0
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twos comp

15 0

Byte unsigned integer

Word unsigned integer

Doubleword unsigned integer

Quadword unsigned integer

Byte signed integer

Word unsigned integer
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x86 Data Types

twos complement I

31 0

twos complement I

63 0

sign bat
exp sigmificand I
31 0
sign bit

exp significand I

63 51 0

sign bit integer bit

exponent significand I

79 63 0
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Doubleword unsigned integer

Quadward unsigned integer

Single precision
floating point

Double precision
floating point

Double extended precision
floating point



x86 Data Types

The Pentium does not require that word, double-words, or
uad-words be aligned on any particular boundary; however, if
ata is accessed across a 32-bit bus, data transfers take place

in 32-bit quantities beginning with an address divisible by 4. If

data is not aligned on such a boundary, then multiple transfers
are needed to get the data.

The Pentium floating-point numbers conform to the IEEE 754
standard.

Pentium data is stored using little-endian style which means
that the least significant byte is stored in the lowest address.

For the C declaration int intVal = -10; show what memory
would look like if the variable intVal is located at memory
location 1000. Use HEX notation.



ARM Data Types

« 8 (byte), 16 (halfword), 32 (word) bits

« Halfword and word accesses should be word aligned

« Nonaligned access alternatives

« Unsigned integer interpretation supported for all types

« Twos-complement signed integer interpretation supported for all types

« Majority of implementations do not provide floating-point hardware
» Saves power and area
» Floating-point arithmetic implemented in software
» Optional floating-point coprocessor
» Single- and double-precision IEEE 754 floating point data types
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ARM Supports Big-Endian
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Fegister
Memory OAOBOCOD

a: UA(—J

atl: OB -«—

at+2:|0C| ==
a+3:|0D| -
: Big-endian
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ARM Supports Little-Endian

Fegister
OAOBOCOD Memory

—» q|0D
— > a+1:|0C

—» a+2:/0B
> a+3:|0A

Little-endian
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