CS430 Computer Architecture

Spring 2015

Chapter 10 Computer Arithmetic

- Unsigned Integer Multiplication
- Read pp. 319-333
- Floating-point numbers
- Read pp. 341-358

Unsigned Integer Multiplication

1011	Multiplicand (11 dec)
$\times 1101$	Multiplier (13 dec)
1011	Partial products
0000	Note: if multiplier bit is 1 copy
1011	multiplicand (place value)
1011	otherwise zero
10001111	Product (143 dec)

Unsigned Integer Multiplication

Unsigned Integer Multiplication

- The multiplier and multiplicand are loaded into Q and M respectively and a third register is needed and initially set to 0 .
- The control logic is:

1. Read multiplier bit one at a time
2. If Q_{0} is 1 , then multiplicand is added to A register and the result is stored in A with C used for overflow.
3. If Q_{0} is 0 , then no addition is performed.
4. Shift C, all A, and all Q bits right one bit
5. Repeat from 1 until each bit in original multiplier is processed

Floating-point Arithmetic

- Very large or very small numbers require floatingpoint notation.
- Consider $53,760,000=.5376 \times 10^{8}$ or $.00005376=$. 5376×10^{-4}
- This notation is based on the relation $y=a\left(r^{p}\right)$ where:
$>y$ is the number to be represented
$>\mathrm{a}$ is the mantissa
$>r$ is the base of the number system (10=decimal; 2=binary)
$\Rightarrow \mathrm{p}$ is the exponent

Floating-point number

- A floating-point number can be divided into three pieces:

1. sign bit for the entire number
2. the exponent for the number represented
3. the mantissa for the number represented

Floating-point number

- Consider a computer with a 12-bit word: s----|s------.
- The first 5 bits from the left represent the exponent (or characteristic) and the remaining 7 bits represent the mantissa (or integer part).
- Both the exponent and mantissa in the above case are represented in signed-magnitude form. They could as well be represented in 2's complement.
- The format of the number expresses a value of: Ix2 ${ }^{\text {C }}$

Floating-point number

1. Using this notation, show what the following values might look like:
a) $4=$
b) $-0.5=$
2. What is the range of the characteristic?
3. What is the range of the mantissa?
4. What is the largest number that can be represented by this 12-bit floating-point number?

Floating-point number

- We can also express the mantissa of the word as a fraction instead of an integer.
- Consider a 12-bit floating-point word as defined above with characteristic C and fraction (mantissa) F. Let's also assume that the binary point is to the left of the magnitude giving us Fx^{C} where F is the binary fraction and C is the characteristic.

$$
\begin{array}{cc}
s----\mid S \cdot------ \\
C & F
\end{array}
$$

Floating-point number

- What are the ranges of values that F can have?
a) S.-
b) s.--
c) S.---
d) s.------
- What is the range that the overall number can have? That is, what are the largest and smallest values?

IEEE Standard 754 Floating-point Format

- IEEE 754 adopted in 1985 and revised in 2008
- Let's start with the 1985 version
- There is a 32-bit and 64-bit representation. The principal feature of this representation features the hidden 1 since the numbers are all normalized. We will discuss this in greater detail later on.

IEEE-754 1985

- Single-precision format
 $S \quad E \quad F$
where S is the sign bit, E is a binary integer, and F is a binary fraction of length 23.
- The value of this number is: $(-1)^{\mathrm{S} x 2^{\mathrm{E}-127} \times 1 . F}$
- The representation used for the exponent is called a "biased representation." This means that a fixed value called the bias is subtracted from the binary value of E to get the actual value.

IEEE-754 1985

- What is the bias of the IEEE 754 fp format? What are the ranges that the exponent can represent?

1. Find what value C03E0000 represents using the IEEE-754 FP format.

IEEE-754 1985

- double-precision
- For double-precison, the value of this number is: (-1)Sx2 ${ }^{\mathrm{E}-1023} \times 1$.F

1. Find the value CO3E0000000000000 represents using the IEEE 754 double-precision FP format.

IEEE-754 1985

- It is important to note that not all bit patterns in the IEEE format are interpreted in the same way. For single-precision:

1. An exponent of 0 with a fraction of 0 represents +0 or -0 depending on the sign bit.
2. An exponent of all 1's with a fraction of 0 represents positive or negative infinity.
3. An exponent of 0 with a nonzero fraction represents a denormalized number.
4. An exponent of all 1's with a nonzero fraction represents a NaN (not a number) and is used to represent various exceptions.
5. Exponents in the range of 1-254 with normalized fractions implies the resulting exponent value will be in the range of -126 to +127 . Since the number is normalized, we do not need to represent the 1 . This bit is implied and called the hidden 1. It is actually a way of adding one more bit of precision to the fraction.

IEEE-754 1985

- Let's go the other way. Find the representation of each of the following in single-precision IEEE-754 FP representation. Express your result in HEX.

1. -1.0
2. $1 / 32$
3. -14.5
