
CS430 Computer Architecture

Spring 2016

Spring 2016 CS430 - Computer Architecture 1

Direct Mapping

Spring 2016 CS430 - Computer Architecture 2

Direct Mapping

Spring 2016 CS430 - Computer Architecture 3

Direct Mapping Summary

• Advantages of direct mapping:

– The technique is simple

– The mapping scheme is easy to implement

• Disadvantage of direct mapping:

– Each block of main memory maps to a fixed location in
the cache which could lead to thrashing

Spring 2016 CS430 - Computer Architecture 4

Associative Mapping

 With associative mapping, any block of memory
can be loaded into any line of the cache.

 A memory address is simply a tag and a word
(note: there is no field for line #).

 To determine if a memory block is in the cache,
each of the tags are simultaneously checked for a
match.

Spring 2016 CS430 - Computer Architecture 5

Associative Mapping

Spring 2016 CS430 - Computer Architecture 6

Associative Mapping

 Address Length is (s + w) bits

 Number of addressable units is 2𝑠+𝑤 bytes

 Block size = line size = 2𝑤 bytes

 Number of blocks in main memory is
2𝑠+𝑤

2𝑤
= 2𝑠

 Number of cache lines is undetermined

 Tag size is (s) bits

Spring 2016 CS430 - Computer Architecture 7

Associative Mapping Example

Spring 2016 CS430 - Computer Architecture 8

Associative Mapping Example

Spring 2016 CS430 - Computer Architecture 9

Associative Mapping

Advantage of associative mapping:
1. There is flexibility when mapping a block to any line
of the cache

Disadvantages of associative mapping:
1. A replacement algorithm must be used to determine
which line of cache to swap out
2. More space is needed for the tag field
3. The most important disadvantage is the complex
circuitry needed to examine all of the tags in parallel in
the cache

 Spring 2016 CS430 - Computer Architecture 10

Set Associative Mapping

 Utilizes the strengths of direct and associative
mapping while trying to reduce their
disadvantges

 The cache is divided into v sets of k lines per set

Spring 2016 CS430 - Computer Architecture 11

k-way set associative

 Calculate each

1. Block size

2. # blocks in main MEM

3. # lines in set

4. # of sets

5. # lines in cache

6. size of the cache

7. tag size

Spring 2016 CS430 - Computer Architecture 12

Two-way set associative

Spring 2016 CS430 - Computer Architecture 13

Two-way set associative

Spring 2016 CS430 - Computer Architecture 14

Cache Replacement Algorithms

 Replacement algorithms are only needed for associative
and set associative techniques. To achieve high speed,
these algorithms must be implemented in hardware.

1. Least Recently Used (LRU) – replace the cache line that has been

in the cache the longest with no references to it (most effective)

2. First-in First-out (FIFO) – replace the cache line that has been in
the cache the longest

3. Least Frequently Used (LFU) – replace the cache line that has
experienced the fewest references

4. Random – pick a line at random from the candidate lines
(simulations have shown this to be slightly inferior to 1. to 3.)

Spring 2016 CS430 - Computer Architecture 15

Cache Write Policies

 If a cache line has not been modified, then it can be overwritten
immediately; however, if one or more words have been written to a
cache line, then main memory must be updated before replacing the
cache line.

 There are two main potential write problems:

1. If an I/O module is able to read/write to memory directly, then if the cache has
been modified a memory read cannot happen right away. If memory is written
to, then the cache line becomes invalid.

2. If multiple processors each have their own cache, if one processor modifies its
cache, then the cache lines of the other processors could be invalid.

Spring 2016 CS430 - Computer Architecture 16

Cache Write Policies

 write through – this is the simplest technique where all write operations are
made to memory as well as cache ensuring main memory is always valid. This
generates a lot of main memory traffic and creates a potential bottleneck

 write back – updates are made only to the cache and not to main memory until
the line is replaced

 Note: Certain studies have shown that about 15% of memory references are
writes except for HPC may approach 33% (vector-vector multiplication) and
50% (matrix transposition)

 cache coherency – keeps the same word in other caches up to date using some
technique. This is an active field of research.

Spring 2016 CS430 - Computer Architecture 17

Cache Coherency

 cache coherency - keeps the same word in other
caches up to date. This is an active field of research.

1. Bus watching with write through - each cache controller
monitors bus lines to detect write operations by other bus
masters. If so, the cache entry is marked invalid

2. Hardware transparency - additional hardware is used to
write through changes to memory AND update all caches

3. Noncacheable memory - a portion of main memory is
shared by more than one processor and all accesses are
cache misses (.i.e. shared memory is never copied into
the cache)

Spring 2016 CS430 - Computer Architecture 18

Unified vs Split Caches

 Recent cache designs have gone from a unified cache to a
split cache design (one for instructions and one for data).

 Unified caches have the following advantages:

1. unified caches typically have a higher hit rate

2. only one cache is designed and implemented

 Split caches have the following advantages:

1. parallel instruction execution and prefetching is better handled
because of the elimination of contention between the instruction
fetch/decode unit and execution unit.

Spring 2016 CS430 - Computer Architecture 19

Intel Cache Evolution

Problem Solution

Processor on which

Feature First

Appears

External memory slower than the

system bus.

Add external cache using

faster memory

technology.

386

Increased processor speed results in

external bus becoming a bottleneck for

cache access.

Move external cache on-

chip, operating at the

same speed as the

processor.

486

Internal cache is rather small, due to

limited space on chip

Add external L2 cache

using faster technology

than main memory

486

Contention occurs when both the

Instruction Prefetcher and the Execution

Unit simultaneously require access to the

cache. In that case, the Prefetcher is stalled

while the Execution Unit’s data access

takes place.

Create separate data and

instruction caches.

Pentium

Increased processor speed results in

external bus becoming a bottleneck for L2

cache access.

Create separate back-side

bus that runs at higher

speed than the main

(front-side) external bus.

The BSB is dedicated to

the L2 cache.

Pentium Pro

Move L2 cache on to the

processor chip.

Pentium II

Some applications deal with massive

databases and must have rapid access to

large amounts of data. The on-chip caches

are too small.

Add external L3 cache. Pentium III

Move L3 cache on-chip. Pentium 4

Spring 2016 CS430 - Computer Architecture 20

Pentium 4 Cache Organization

Spring 2016 CS430 - Computer Architecture 21

Pentium 4 Core Processor

 Fetch/Decode Unit

1. Fetches instructions from L2 cache

2. Decode into micro-ops

3. Store micro-ops in L1 cache

 Out of order execution logic

1. Schedules micro-ops

2. Based on data dependence and resources

3. May speculatively execute

Spring 2016 CS430 - Computer Architecture 22

Pentium 4 Core Processor

 Execution units

1. Execute micro-ops

2. Data from L1 cache

3. Temporarily stores results in registers

 Memory subsystem

1. Accesses main memory on a cache miss

Spring 2016 CS430 - Computer Architecture 23

Virtual Memory

 Almost all non-embedded processors and many
embedded processors support virtual memory

 virtual memory - allows programs to address
memory from a logical point of view (i.e. without
regard to the amount of physical main memory)

 When virtual memory is used, the address fields
of machine instructions contain virtual addresses

 MMU (Memory Management Unit) - translates
virtual addresses into physical addresses

Spring 2016 CS430 - Computer Architecture 24

Virtual Memory

 When virtual memory addresses are used, the
system designer can either:

1. place the cache between the processor and MMU
(logical cache uses virtual addresses)

2. place the cache between the MMU and main memory
(physical cache uses physical addresses)

Spring 2016 CS430 - Computer Architecture 25

Logical Cache

Spring 2016 CS430 - Computer Architecture 26

Physical Cache

Spring 2016 CS430 - Computer Architecture 27

ARM Cache Organization

Core Cache

Type

Cache

Size (kB)

Cache

Line Size

(words)

Associativit

y

Location Write

Buffer

Size

(words)

ARM720T Unifie

d

8 4 4-way Logical 8

ARM920T Split 16/16 D/I 8 64-way Logical 16

ARM926EJ-S Split 4-128/4-

128 D/I

8 4-way Logical 16

ARM1022E Split 16/16 D/I 8 64-way Logical 16

ARM1026EJ-S Split 4-128/4-

128 D/I

8 4-way Logical 8

Intel

StrongARM

Split 16/16 D/I 4 32-way Logical 32

Intel Xscale Split 32/32 D/I 8 32-way Logical 32

ARM1136-JF-S Split 4-64/4-64

D/I

8 4-way Physical 32

Spring 2016 CS430 - Computer Architecture 28

ARM Cache

Spring 2016 CS430 - Computer Architecture 29

Small FIFO write buffer

1. Enhances memory write performance

2. Between cache and main memory

3. Data put in write buffer at processor clock speed

4. Processor continues execution

5. External write in parallel until empty

a. If buffer full, processor stalls

6. Data in write buffer not available until written

a. Keep buffer small (e.g. 4 words of data)

Spring 2016 CS430 - Computer Architecture 30

