CS430 Computer Architecture

Spring 2016

Spring 2016 CS430 - Computer Architecture

Direct Mapping

Malin memory address (binary)

Spring 2016

(hex) Tag Line + Word Data
00 i'.'.QUIFQ0.0D_OD.0.0DD.OQQOQQOQ.D.O.C! 13579246 | = = =
00 i.006N00aN000DoN0~NN0La0nI10n 1
1
-~ T l
— — I
1
[
00 {00000 GIIIIZ‘IIiZIi'IiZIIlﬁiIi.tIO.U !
00 330933 011131113111131100 1
- : Line
. 1 Tag Data Number
16 . 00010116000000000000000G [777222277 -===J00] 135792456 | 0000
16 1 000101100000000000000004| 11235813 = = = = = = = -4 16 11235813 | 0001
16 (I 000101¥0001:1001110031100| FEDCBA98 | = = = = = = = 4 16 | FEDCBA98 | OCE7
= = = = - FF 11223344 | 3FFE
16 000101 T0T1iM1i11i1131100 | 12345678 } = = -+ = = = 4 16 | 12345678 | 3FFF
. 1
° 1 ‘—’
a N 8bits 32 bits
FF { 11¥11Y11000p00008§00000000 1 £
FF i 11§111110005000000040100 ' {eKBneciche
1
[
"‘v ﬁv l
1
[
FF {IITITEITTIATITYI113100G | 11223344 | - = =1
FF 111111 F11119111311131100G | 24682468 Note: Memory address values are
- in binary representation;
32 bits other values are in hexadecimal
16-MByte main memory
Tag Line Word
Main memory address = I I I |
>« >
8 bits 14 bits 2 bits

CS430 - Computer Architecture

Direct Mapping

Direct Mapping -,

Example

Spring 2016

oo

Line +
Word Data
0000 | 13579246 | = = =y
0004
FFFB
FFFC
oooo 77777777
0004 11235613 = = =
339C | FEDCBA9B [~ = = -
S ~_
FFFC | 12345678 |- = = =
0000
nno4
. A
FFFE| 112233494 o = = =
FFEC | 24682468
32 bits
16-MByte main memory

Tag

16-Kline cache

Line

Line

Tag Data_ Number

00 | 13579246 | 0000

16 | 11235813 | 0001
- b

16 | FEDCBASS | OCE7
— "v

FF 11223344 3FFE

16 | 12345678 | 3FFF
< " 5
B8bits 32 bits

Word

Main memory address = I

s |

2]

CS430 - Computer Architecture

Direct Mapping Summary

« Advantages of direct mapping:
— The technique is simple
— The mapping scheme is easy to implement

« Disadvantage of direct mapping:

— Each block of main memory maps to a fixed location in
the cache which could lead to thrashing

Associative Mapping

o With associative mapping,

any block of memory

can be loaded into any line of the cache.

« A memory address is simp
(note: there is no field for

 To determine if a memory

y a tag and a word
ine #).

block is in the cache,

each of the tags are simultaneously checked for a

match.

Associative Mapping

Main Memory

L]
- e e

SHW
7
Memaory Address Tag Data
| Tag | ward | |
L
5L o
Y
Wy | e |
1 = 1
1 -
|
W L
Compare U
[- |
| ihiti -
N —— thit in cache)
0if mo match I |
5
P I-m—1
0 if match
M[misﬁ in cachel)

Spring 2016 CS430 - Computer Architecture

Associative Mapping

o Address Length is (s + w) bits
« Number of addressable units is 25*% bytes
» Block size = line size = 2% bytes

ZS+W

« Number of blocks in main memory is = 25

ZW
o Number of cache lines is undetermined

o Tag size is (s) bits

Spring 2016 CS430 - Computer Architecture

Associative Mapping Example

Pl odom meewiroary acddress Chinaryy

Tag (hex) Terg e Diata

apooan ﬁﬁﬁmﬁﬁmﬁm@' O | 13579246
Q00001 HTUORGLOE T oD ok

Line
Tap Diata Number
JELTETE] L1Z2334d<] 0O0Q

OS8CET| FEDCBASE | 0001

bl il e Bl il Eelli el

L-----LL&--*-

i

O058CEG& [¢] =_m]_11 1] il -_'!Flj..
siicE] DLREIER I | reocesse | - !

i

-t - = = JETEFD| 33333333 | 3FFD
- - =l POROO0]) L3579246 | 3FFE
- == 3JFFEEEL 24 IFEF
- = —
21 bits 32 bits
-
146 Eline Cache

L
e ——————

Mot bdemory address values ane

in binary represenvanon;
37 hits gther valnes are in bezadecimal
14 MByie Maim Memory
Tag Wiord
Main Memory Address = I I I
* - -
27 hifs 2 biis

Spring 2016 CS430 - Computer Architecture

Associative Mapping Example

Associative

Mapping Example .

Spring 2016

Address Data
000000 [13579246 F = = =
000004 I
I
!
L =
P I
I
!
I
I
I g
I Line
[Tag Data Number
t 1=~-[3FEFEE| 11223344 | 0000
- =p = =4053CE7 | FEDCBASE | 0001
T -t 0
163393 5 .
16339C | FEDCBASE b -' |, | ~.
163380
~_ ~_ I 1
= = & = & = o JFFFFD| 33333333 | 3FFD
! | = ol = =| 000000| 13579246 | 3FFE
! mm & = IFFFFF | 24682468 | 3FFF
1] 1
g, < > < >
" T 22bits 32 bits
. 16 Kline Cache
1] 1
1 I 1
~N_ ~N_ 1 1 '
1] 1
FFFEF4 | 33333333 ="' ' 1t
FFFEFS | 11223344 == =L =2
FEFEFC | 24682468 f = = = |
32 bits
16 MByte Main Memory
Tag Word

Main Memory Address = I

CS430 - Computer Architecture

Associative Mapping

Advantage of associative mapping:

1. There is flexibility when mapping a block to any line
of the cache

Disadvantages of associative mapping:

1. A replacement algorithm must be used to determine
which line of cache to swap out

2. More space is needed for the tag field

3. The most important disadvantage is the complex
cri]rcuitr needed to examine all of the tags in parallel in
the cache

Set Associative Mapping

« Utilizes the strengths of direct and associative
mapping while trying to reduce their
disadvantges

« The cache is divided into v sets of k lines per set

Spring 2016 CS430 - Computer Architecture

11

k-way set associative

» Calculate each miﬁ/ﬁ Cac Mt Memors
Memary 55 Tag Dam B
. LLaz] &t | L1 = "
1. Block size A) — 3
2. # blocks in main MEM e B
| I
_ _ 4 & I I
3. # lines in set (= RN
4. # of sets H‘ﬁcm H Fur | > 5 e
I
. . N | L 1 L
5. # lines in cache T L'— s L
I |
6. size of the cache - Lo
7. tag size Figure 414 k-Way Set Associative Cache Organization

Spring 2016 CS430 - Computer Architecture 12

Two-way set associative

Tag Bulidm m:m:r_ﬂdnm-;hinny:- . hiain }-{:TEID:I'_',-'“UﬂdItss -
?f? T S T i ot
H i N H ===
00 uﬂ%ﬁ:ﬁx%ﬂ ' L]
1
I —4 — >4
i o “1 1 9 itz 13 hits 2 it
1
1
ooo ST R N] !
aoo EE%QMMMJ.MMM:E .__.:___________________________
. - Set 1
. [Tag Data Mumber Tag Diata 1
02 Eﬁﬁ'm'lmﬁcmmtim‘:ﬁg Tt =l == JTOO] L35 000E | 000D [Oon] trrrrrrr ="
02c IMOIETYOOOODOIUROOTOION] 11235613 = = === = = o p2C] 112356813 | 0001

02C RAREIIERT 1IN0 niE100|| FEDCERASE | = = = = = = = 4 02C| FEDCBRASE | OCET

s T L 1 - s L L =

r==|1EE| 11223344 | 1FFE

1FF ITITTITYITTTOITITTATYTGOH] 1122354 e = = = =

020 OOUTATTONTTTITTIAYYIGOE] 12345676 = =—=—— = + =-02C) 13345678 | IFEF |1EE| 246E245E |~ 4
: | —_— :

. I Phit 32his Phit 32his I

1FF HTIITITY P s T 1 = 1
G saatahb it o : 16 Kl Cache |
1 1

I |

1 |

4 1

133 T I T T TTII00| 24662868 fF mm mm e e e e e e e e e e - e
32 bits

Mote: Memory address valnes ane
16 MByte Mam hMemory in binary representation;
other values are in hezadecimal

Figure 4.15 Two-Way Set Associative Mapping Example

Spring 2016 CS430 - Computer Architecture

Spring 2016

Two-way set associative

1WUV vvay

Tag Set+Word Data

0000 1570248 F = = =
s t 0004 1
e |
|}
- - 0oo T u 1
Associative :
1
= 7FFB !
Mapping 7EFC '
o7 AR T TR e e
[Set
. [Tag Data Number Tag Data
Example W [TTTTT7 T =! v === JO00[135792987] 000 [O0T 77777777
0004 | 11235813 po = = = = = = = o 02c| 112356813 | 0001
i, =3 L = ~— t ~_ -~
02¢ 3390 | FEDCRAGS | = = = = = = = 4 12| FEDCBAGE | OCE7
L = L 9 i = L L = L
r== 1FF| 11223344 | 15FE
7EFC 2345678 == == p=q2C) 12345678 | 1FFF LLFF) 24682468
: : >
X 9bits 32 bits 9 bits 32 bits
nonn '
0004 : 16 Kline Cache
I
-~ ~ '
1FF = B 1
I
I
7FFB | 11223344 | = = = = = a4
FEFC | 24662466 b m e e m ccccc e c e c e e e m e - -————---
32 bits
16 MByte Main Memory
Tag Sel Word
Main Memory Address = I g l 13 |2 |
CS430 - Computer Architecture

14

Cache Replacement Algorithms

« Replacement algorithms are only needed for associative
and set associative techniques. To achieve high speed,
these algorithms must be implemented in hardware.

1. Least Recently Used (LRU) - replace the cache line that has been
in the cache the longest with no references to it (most effective)

2. First-in First-out (FIFO) - replace the cache line that has been in
the cache the longest

3. Least Frequently Used (LFU) - replace the cache line that has
experienced the fewest references

4. Random - pick a line at random from the candidate lines
(simulations have shown this to be slightly inferior to 1. to 3.)

Cache Write Policies

« If a cache line has not been modified, then it can be overwritten
immediately; however, if one or more words have been written to a
cacﬂe i!ne, then main memory must be updated before replacing the
cache line.

« There are two main potential write problems:

1. Ifan I/O module is able to read/write to memory directly, then if the cache has
been modified a memory read cannot happen right away. If memory is written
to, then the cache line becomes invalid.

2. If multiple processors each have their own cache, if one processor modifies its
cache, then the cache lines of the other processors could be invalid.

Spring 2016 CS430 - Computer Architecture 16

Cache Write Policies

write through - this is the simplest technique where all write operations are
made to memory as well as cache ensuring main memory is always valid. This
generates a lot of main memory traffic and creates a potential bottleneck

write back - updates are made only to the cache and not to main memory until
the line is replaced

Note: Certain studies have shown that about 15% of memory references are
writes except for HPC may approach 33% (vector-vector multiplication) and
50% (matrix transposition)

cache coherency - keeps the same word in other caches up to date using some
technique. This is an active field of research.

Spring 2016 CS430 - Computer Architecture 17

Cache Coherency

« cache coherency - keeps the same word in other
caches up to date. This is an active field of research.

1.

Bus watching with write through - each cache controller
monitors bus lines to detect write operations by other bus
masters. If so, the cache entry is marked invalid

Hardware transparency - additional hardware is used to
write through changes to memory AND update all caches

Noncacheable memory - a portion of main memory is
shared by more than one processor and all accesses are
cache misses (.i.e. shared memory is never copied into
the cache)

Unified vs Split Caches

Recent cache designs have gone from a unified cache to a
split cache design (one for instructions and one for data).

Unified caches have the following advantages:
1. unified caches typically have a higher hit rate
2. only one cache is designed and implemented

Split caches have the following advantages:

1. Barallel instruction execution and prefetching is better handled
ecause of the elimination of contention between the instruction
fetch/decode unit and execution unit.

Intel Cache Evolution

Processor on which
Feature First

Problem Solution Appears
Add external cache usi 386
External memory slower than the external cache using
svstem bus faster memory
¥ : technology.
. Move external cache on- 486
Increased processor speed results in . .
. chip, operating at the
external bus becoming a bottleneck for
same speed as the
cache access.
Processor.
Internal cache is rather small, due to Aqd G GO 486
. . using faster technology
limited space on chip .
than main memory
Contention occurs when both the Create separate data and Pentium
Instruction Prefetcher and the Execution instruction caches.

Unit simultaneously require access to the
cache. In that case, the Prefetcher is stalled
while the Execution Unit’s data access
takes place.

Increased processor speed results in
external bus becoming a bottleneck for L2
cache access.

Create separate back-side
bus that runs at higher
speed than the main
(front-side) external bus.
The BSB is dedicated to
the L2 cache.

Pentium Pro

Move L2 cache on to the Pentium II
processor chip.
Some applications deal with massive Add external L3 cache. Pentium I
databases and must have rapid access to
large amounts of data. The on-chip caches | Move L3 cache on-chip. Pentium 4

are too small.

Spring 2016

CS430 - Computer Architecture

20

Pentium 4 Cache Organization

Spring 2016

CS430 - Computer Architecture

System Bus
Out-of-order L1 instruction Instruction | g
execution cache (12K pops) fetch/decode
logic umnit
64 A
bits
L3 cache
l (1 MB)
Integer register file "T’ FP register file
Load Store Simple Simple Complex FP/ FP i
address address integer integer integer MMX move
unit unit ALU ALU ALU unit umnit L2 cache
(512 KB)
L1 data cache (16 KB) ﬁ_‘t

256
bits

21

Pentium 4 Core Processor

» Fetch/Decode Unit
1. Fetches instructions from L2 cache
2. Decode into micro-ops
3. Store micro-ops in L1 cache

o Out of order execution logic
1. Schedules micro-ops
2. Based on data dependence and resources
3. May speculatively execute

Spring 2016 CS430 - Computer Architecture

22

Pentium 4 Core Processor

o Execution units
1. Execute micro-ops
2. Data from L1 cache

3. Temporarily stores results in registers

« Memory subsystem

1. Accesses main memory on a cache miss

Spring 2016 CS430 - Computer Architecture

23

Virtual Memory

Almost all non-embedded processors and many
embedded processors support virtual memory

virtual memory - allows programs to address
memory from a logical point of view (i.e. without
regard to the amount of physical main memory)

When virtual memory is used, the address fields
of machine instructions contain virtual addresses

MMU (Memory Management Unit) - translates
virtual addresses into physical addresses

Virtual Memory

« When virtual memory addresses are used, the
system designer can either:

1. place the cache between the processor and MMU
(logical cache uses virtual addresses)

2. place the cache between the MMU and main memory
(physical cache uses physical addresses)

Spring 2016 CS430 - Computer Architecture 25

Logical Cache

Spring 2016

Processor

Logical address

k A
Cache

I

MMU

Physical address

Data

CS430 - Computer Architecture

Main
memory

26

Physical Cache

Spring 2016

Processor

Logical address

I

MMU

Physical address

Data

Cache

CS430 - Computer Architecture

Main
memory

27

ARM Cache Organization

Spring 2016

Core Cache Cache Cache Associativit | Location Write
Type | Size (kB) | Line Size y Buffer
(words) Size
(words)
ARM720T Unifie 8 4 4-way Logical 8
d
ARM920T Split 16/16 D/1 8 64-way Logical 16
ARM926EJ-S Split 4-128/4- 8 4-way Logical 16
128 D/I
ARMI1022E Split 16/16 D/I 8 64-way Logical 16
ARMI1026EJ-S Split 4-128/4- 8 4-way Logical 8
128 D/I
Intel Split 16/16 D/I 4 32-way Logical 32
StrongARM
Intel Xscale Split 32/32 D/1 8 32-way Logical 32
ARMI1136-JF-S Split | 4-64/4-64 8 4-way Physical 32
D/1

CS430 - Computer Architecture

28

ARM Cache

physical address

virtual
address Address
Translation
ARM Core
R15
L]
L]
RO

Spring 2016

Level 1 Level 2
Cache(s) € 3 Cache
Y
Write
buffer

Main
Memory

CS430 - Computer Architecture

29

Small FIFO write buffer

Enhances memory write performance

Between cache and main memory

Data put in write buffer at processor clock speed
Processor continues execution

oum A W N =

External write in parallel until empty
a. If buffer full, processor stalls

6. Data in write buffer not available until written
a. Keep buffer small (e.g. 4 words of data)

Spring 2016 CS430 - Computer Architecture

30

