CS430 Computer Architecture

Spring 2015

Spring 2015 CS430 - Computer Architecture

Chapter 3
A Top-Level View of Computer Function
and Interconnection

o Skipping Section 2.6 Performance Assessment
until needed

« Computer Components & Function (Section 3.1 &
3.2) on pp.66-84

« Good problems to work: 3.1, 3.2, 3.3

Computer Components
Top-level View

CPU Main Memory
B 0
System 1
Bus N
PC | MAR | Testruetion :
Iestruetion
i -
IR | MBR | —
'O AR :
. Data
Exrcwiton
'O BR =
Diata
L'O Module . m-1
m-1
. PC = Program counter
" Buffers IR = Instruction register
MAR = Memory address repister
MBR = Memory buffer register
L0 AR = Inputfouwtput address register

IO BR = Inputioutpat buffer register

Figure 3.2 Computer Components: Top-Level View

Spring 2015 CS430 - Computer Architecture

Basic Computer Function

Spring 2015

Fetch Cycle Execute Cycle
- ; J | FetchNest Execute B
— }i —

Figure 3.3 Basic Instruction Cyele

CS430 - Computer Architecture

Problem

o Explain an instruction fetch using the components
of Figure 3.2

Spring 2015 CS430 - Computer Architecture 5

Hypothetical Computer

» Consider a
hypothetical
computer with
a single
accumulator
(register)
where both
Instructions
and data are
16-bits long.

Spring 2015

0 34 15
| Opcode | Address
(a) Instruction format
0 1 15
S Magnitude

(b) Integer format

Program Counter (PC) = Address of instruction
Instruction Register (IR) = Instruetion being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers

0001 = Load AC from Memory
0010 = Store AC to Memory
0101 = Add to AC from Memory

(d) Partial list of opcodes

Figure 3.4 Characteristics of a Hypothetical Machine

CS430 - Computer Architecture

Problem

1. How many possible instructions can this
hypothetical computer have? Why?

2. Give the hexadecimal representation of the
number 15 and -15.

Spring 2015 CS430 - Computer Architecture

Program Trace

Memory CPU Registers Memory CPU Registers
3001 940 300/PC |300[1 9410 30 1]PC
30159411 ACj301[5 9 41 000 3]AC
30229.41 194 0|/IR 30229}1]1940[1&
940[0 0 0 3 940[0 0 0 3
941[0 0 0 2 941/0 0 0 2
« Program fragment adds Step 1 Step 2
Memory CPU Regist Memory CPU Regist
contents at address 940 to 0T340 [F0Irc |w00[I5408 [03lec
. 301(5 9 4 1 000 3|AC|301[59 41 000 5|AC
contents at address 941 with |z bEsair|Esi Q = lj
result at 941 D I
Step 3 Step 4
o 0001 - Load AC from MEM Memory CPU Registers Memory CPU Registers
30019 40 30 2/pc |300[T9 40 30 3]PC
301[5 9 4 1 000 5/AC|301[5 9 4 1 00 0 5]AC
e 0010=Store AC to MEM 30239_41 VI TR 302;9_41 TR
940[0 0 0 3 940[0 0 0 3
941 941 5
- 0101=Add to AC from MEM

Figure 3.5 Example of Program Execution
(contents of memory and registers in hexadecimal)

Spring 2015 CS430 - Computer Architecture 8

Instruction Cycle

o Let's break down the instruction cycle as follows:

Instruction Operand Operand
fetch fetch store
Multiple Multiple
operands resulis
Instruection Instruction Operand Data Operand
address operation = address G —pp address
ealculation) Hecoding ealculation Qperaticy Palculation

. Return for siring
Inslrucm}l? compltléte, r vector data
fetch next instruction

Figure 3.6 Instruction Cycle State Diagram
Spring 2015 CS430 - Computer Architecture

Interrupt

« Interrupt - is an external request for service. In particular,
an interrupt causes the microprocessor to stop executing
the current procedure (saving the status) and continue on
with the routine specified by the interrupt. When the
interrupt has been fully serviced, control returns to the
previously executing routine.

« Two types of interrupts exist:

1. maskable - depending on the status of the interrupt flag, this
interrupt can be ignored by the hardware.

2. nonmaskable - must be acknowledged by the hardware independent
of the interrupt flag.

Classes of Interrupts

Program - generated by some instruction execution
1. division by zero
2. attempt to execute illegal opcode

3. reference outside a user’s memory space
o Timer - generated by a timer within the processor for OS

« I/O - generated by an I/O controller to signal normal
completion

« Hardware Failure - generated by a power failure or memory
parity error

Spring 2015 CS430 - Computer Architecture 11

Modified Instruction Cycle

Spring 2015

Fetch Cycle Execute Cycle Interrupt Cycle
* Interrupts
Drizabled

- - . Check for

I/ — ’ =.- Mm;
[Process Interrupt

Figure 3.9 Instruction Cyvele with Interrupts
CS430 - Computer Architecture 12

Flow of Control

« In figure 3.8, the instruction completes at location i and then any pending
interrupts are checked for by the processor. If an interrupt is found, as in
the case of figure 3.8, the next instruction at i+1 is saved and execution
continues at the interrupt handler. Once the interrupt handler has
completed, control returns to the instruction at location i+1.

User Program Interrupt Handler

_

Interrupt 4
ooenrs here i+1

M

Figure 3.8 Transfer of Control via Interrupts
Spring 2015 CS430 - Computer Architecture 13

Flow of Control

Spring 2015

Lo User
Program Program
jie} N
Command WRITE
Intermpt
Handler
.. H @ WRITE
¥ END
WRITE
(a) No interrupts (b) Interrupts; short /O wait (c) Interrupts; long I/O wait

x = interrupt occurs during course of execution of user program

Figure 3.7 Program Flow of Control Without and With Interrupts

CS430 - Computer Architecture

14

Time Savings using Interrupts

Time

noN

concurrent with
processor executing

I I/O operation;

I/O operation
processor waits

I/O operation
concurrent with
processor executing
/O operation;
I processor waits

olelejelele|elele

(¥
9
©
(@)
9

@ (b) With interrupts
(a) Without interrupts

Figure 3.10 Program Timing: Short I/O Wait
Spring 2015 CS430 - Computer Architecture

15

Time Savings using Interrupts

Time

I/O operation:
processor waits

I/O operation:
processor waits

HON
i
9
©
i
HON
®

(a) Without interrupts

o)
@
©,
B
ol
NoN
©
B
(5)

(b) With interrupts

I/O operation
concurrent with

processor executng;

then processor
waits

I/O operation
concurrent with

processor executng;

then processor
waits

Figure 3.11 Program Timing: Long I/O Wait
Spring 2015 CS430 - Computer Architecture

16

Instruction Cycle with Interrupts

Instruction Operand Operand
fetch fetch store
Multiple Multiple
operands results
Instruction Instruction Operand Data Operand
address operation = address o o = address T = Interrupt
calculation decoding calculation e calculation check

No
Instruction complete, Return for string interrupt
fetch next instruction or vector data

Figure 3.12 Instruction Cycle State Diagram, With Interrupts

Spring 2015 CS430 - Computer Architecture

17

