CS430 Computer Architecture Final Exam Topics

- Chapter 1 Introduction
 - Computer Architecture
 - o Computer Organization
- Chapter 2 Computer Evolution & Performance
 - Performance Assessment
 - o Speedup
 - o %faster
 - o fraction enhanced
 - o digital logic
- Chapter 3 Computer Function & Interconnection:
 - Instruction cycle
 - Interrupts
 - o Bus design: synchronous vs. asynchronous timing
- Chapter 4 Cache Memory
 - Memory Hierarchy
 - Locality of Reference
 - Cache Design
 - Direct Mapping
 - Associative Mapping
 - Set-Associative Mapping
 - Replacement Algorithms
- Chapter 5 Nothing
- Chapter 6 Nothing
- Chapter 7 Nothing
- Chapter 8 Nothing
- Chapter 9 Number Systems
 - o Binary
 - o Decimal
 - o Hex
 - Converting between bases
- Chapter 10 Computer Arithmetic:
 - o Sign-magnitude
 - o One's complement
 - o Two's complement
 - o Integer addition and subtraction
 - o IEEE floating-point representation
 - Arithmetic Overflow (signed/unsigned)
- Chapter 11 Digital Logic
 - o Boolean Algebra
 - o POS & SOP
 - Gates
 - Combinational Circuits

- o Multiplexer
- o Decoder
- o K maps
- Chapter 12 Instruction Sets:
 - o Advantages and disadvantages of the possible number of addresses
 - o Packed decimal: what is it?
 - Endianness
 - Branching and stack frames
- Chapter 13 Addressing modes and formats
 - O What is an effective address?
 - o Segmented Memory & the x86
 - o Describe any of the addressing modes.
 - Assembly language
- Chapter 14 Processor Structure and Function
 - o Registers (user-visible, control & status)
 - Condition Codes
 - o signed versus unsigned instructions
 - Segment pointer and offset
 - o Control and status registers
 - Instruction cycle
 - o Speedup
 - Instruction pipelining
 - o Pipeline hazards (structural, control, data)
 - Loop buffer
 - Branch prediction
 - Dealing with branch hazards
 - o Interrupt Processing: interrupt vector table and interrupt handling
- Chapter 15 RISC
 - o RISC versus CISC
 - MIPS Processor (non-pipelined)
 - o MIPS 5-stage pipeline
 - RISC pipelining
 - o data forwarding using special registers between pipeline stages
 - Describe x number of differences between RISC and CISC
 - o MIPS assembly