
Synchronization
&

Game Loop Design

Code Examination – Thread run()
class TutorialThread extends Thread {…

@Override public void run() {
 Canvas c;
 while (_run) {
 c = null;
 try {
 c = _surfaceHolder.lockCanvas(null);
 synchronized (_surfaceHolder) {
 _panel.updatePhysics();
 _panel.onDraw(c); }
 } finally {
 // do this in a finally so that if an exception is thrown
 // during the above, we don't leave the Surface in an
 // inconsistent state
 if (c != null) {
 _surfaceHolder.unlockCanvasAndPost(c); } } } }

From:
http://www.droidnova.com/playing-with-graphics-in-android-part-v,188.html

http://www.droidnova.com/playing-with-graphics-in-android-part-v,188.html

Code Examination – SurfaceView
onTouch ()

@Override
public boolean onTouchEvent(MotionEvent event) {
synchronized (_thread.getSurfaceHolder()) {
 if (event.getAction() == MotionEvent.ACTION_DOWN) {
 GraphicObject graphic = new GraphicObject(
 BitmapFactory.decodeResource(getResources(),
 R.drawable.icon));
 graphic.getCoordinates().setX((int) event.getX() –
 graphic.getGraphic().getWidth() / 2);
 graphic.getCoordinates().setY((int) event.getY() –
 graphic.getGraphic().getHeight() / 2);
 _graphics.add(graphic);
 }

 return true;
}
}

From:
http://www.droidnova.com/playing-with-graphics-in-android-part-v,188.html

http://www.droidnova.com/playing-with-graphics-in-android-part-v,188.html

Questions to think about

1. What is the purpose of c =
_surfaceHolder.lockCanvas(null);

2. What is the purpose of
synchronized?

3. Where do we have to use
synchronized?

4. What threads exist and what are
they doing?

Back to SurfaceView

• Provides a dedicated surface for a secondary
thread to render screen content

• All SurfaceView and SurfaceHolder.Callback
methods are called from the thread running
the SurfaceViews window (typically the main
application thread)

What potential thread problems can exist?

Synchronization

• Every Java object (including every class
loaded) has an associated lock

• synchronized block
– compiler adds instructions to acquire lock before

executing code
– compiler adds instructions to release lock after

executing code

• thread owns the lock

More Synchronization

If thread A and thread B both have access to a Counter
object and thread A owns the lock, thread B must wait
for thread A to release the lock. Thus, simultaneous
calls to increment and decrement behave correctly.

public class Counter {private int count = 0;public void increment () {synchronized (this){++count;}}
 public void decrement () {synchronized (this) {--count;}}
}

Questions to think about

1. What is the purpose of c =
_surfaceHolder.lockCanvas(null);

2. What is the purpose of
synchronized?

3. Where do we have to use
synchronized?

4. What threads exist and what are
they doing?

Game Loop Design

• Games consist of:
– getting user input
– updating the game state (physics)
– game AI
– music/sound effects
– game display

Main Game Loop

while (bIsRunning)
{
 updateGame ();
 drawGame ();
}

Terminology

• Frames Per Second (FPS) – number of times
drawGame () is called

• Game Speed (GS) – number of times
updateGame () is called

	Synchronization & Game Loop Design
	Code Examination – Thread run()
	Code Examination – SurfaceView onTouch ()
	Questions to think about
	Back to SurfaceView
	Synchronization
	More Synchronization
	Slide 8
	Game Loop Design
	Main Game Loop
	Terminology

