Trees

Until now, we have dealt with linear data structures such as:

- arrays
- linked lists
- stacks
- queues

A tree is:

- a nonlinear data structure where members may have multiple successors
- a data structure made up of nodes.

Trees

Tree Terminology

- root - unique starting node
- degree - number of subtrees of the node
- parent - predecessor of a node
. child - successor of a node
leaf - a node with no children
siblings - two nodes with the same parent
ancestors - let A be an arbitrary node of a tree. If A is the root node, then A has no ancestors; otherwise, the parent of A and all ancestors of A's parent are ancestors of A

What kind of definition is ancestor?

Tree Terminology

descendants - let B be an arbitrary node of a tree. If B is a leaf node, then B has no descendants; otherwise, each child of B and all descendants of each child of B are descendants of B.
. subtree - an arbitrary node in the tree and all descendants of that node

- level - the root node is level 0 and every other node in the tree is at level n where n is the number of nodes in the path from the root node to the node in question
- height of a node - \# of edges on longest path between that node and a leaf
- height of tree - height of the root node
depth of a node - \# of edges from root node to the node

Identify Tree Attributes

For the given tree, identify:
a) root
b) parent of E
c) children of A
d) leaf nodes
e) any two siblings
f) ancestors of F
g) descendants of C

h) level of D
I) depth of the tree
j) height of C
k) depth of C

General Tree

- Characteristics of any tree:
- There is a specifically designated node called the root, in this case 1 if not otherwise specified
- The remaining nodes are grouped into $n>=0$ disjoint sets T_{0}, T_{1}, \ldots T_{n} where each set is a tree

Figure 1: A simple tree.

Binary Tree

- Characteristics of a binary tree:
- A binary tree is an example of a general tree
- Each parent can have at most two children
- A binary tree can be empty
- If a binary tree has two children, the child on the left is the "left child" and the one on the right is the "right child"
- Note: The left child is the root of the left subtree and the right child is the root of the right subtree

Some Binary Tree Operations

- Before defining the Binary Tree ADT, let's work a few problems.
- Write the appropriate data structure definitions for a binary tree.
- We can define three traversal methods for a binary tree:
- inorder: Left, Visit, Right (LVR)
- preorder: Visit, Left, Right (VLR)
- postorder: Left, Right, Visit (LRV)

Identify

. For the following binary tree, identify the inorder, preorder, and postorder traversals.

Binary Search Tree (BST)

- Consider an arbitrary node in a tree called A.
- All values in the left subtree are less than the value in A .
- All values in the right subtree are greater than the value in A.

Create BST

- Create a BST for the following strings assuming lexicographic (dictionary or alphabetical) ordering (e.g. : apr < jan):
- jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec

Traversals

- If visiting a node means printing the contents of the node, show each of the following traversals of the newly created BST.
- preorder
- inorder
- postorder

BST Functions

- Write an algorithm for bstInsert.
- What is the worst case computing complexity of your algorithm? Why?
- Write the C function bstInsert.

BST Functions

- Write a C function bstFindLevel that returns the level of a node in a BST.
- Write a C function btFindLevel that returns the level of a node in a binary tree.

