STACK ADT
Stack

- The stack is a LIFO (Last-in First-out) linear data structure.

- The only data element that can be removed is the most recently added element.
Stack ADT Specification

- **Elements**: Stack elements can be of any type, but we will assume StackElement.

- **Structure**: Any mechanism for determining the elements order of arrival into the stack.
Stack ADT Continued

- **Domain**: The number of stack elements is bounded. A stack is considered full if the upper-bound is reached. A stack with no elements is considered empty.

- **Operations**: There are seven operations as follows:
Stack ADT Continued

function create (s: Stack, isCreated: boolean)
 results: if s cannot be created, isCreated is false; otherwise, isCreated is true, the stack is created and is empty

function terminate (s: Stack)
 results: stack s no longer exists
Stack ADT Continued

function isFull (s: Stack)
results: returns true if the stack is full; otherwise false is returned

function isEmpty (s: Stack)
results: returns true if the stack is empty; otherwise, false is returned

function push (s: Stack, e: StackElement)
requires: isFull (s) is false
results: element e is added to the stack as the most recent element
Stack ADT Continued

function pop (s: Stack, e: StackElement)
 \textbf{requires}: \text{isEmpty}(s) \text{ is false}
 \textbf{results}: The most recently added element is removed and assigned to \(e \)

function peek (s: Stack, e: StackElement)
 \textbf{requires}: \text{isEmpty}(s) \text{ is false}
 \textbf{results}: The most recently added element is assigned to \(e \) but not removed
Testing your Data Structure

• Your customer will abuse your data structure

• Your data structure should never crash the customer's code
 • code defensively

• Test each function
 • test each function’s requires statement
 • test boundary conditions (full/empty)
 • test bad input
 • test functions called in the wrong order
What are Stacks Useful for?

• Web browser history.

• “undo” in applications.

• Runtime stack.
Ex. 2: Balancing Parentheses

• Parentheses in algebraic expressions need to be balanced in order for the expression to be correct.

• Which of the following are valid expressions?
 • \(\{a^2 - [(c - d)^2 + (e - f)^2] \} \)
 • \(\{a - [(b + c))) - (d + e)] \} \)
 • \(\{a - [[(b + c) - (d + e)] \} \)
 • \(\{a - [(b + c) - (d + e)] \} \)

• How can a stack be used to test if an expression’s parentheses are balanced?