
Assignment 4: Dynamic List

Topics: Singly-linked list, Dynamic Memory, Valgrind, Procrastination
Date assigned: Wednesday, October 4, 2017
Date due: Part 1: Wednesday, October 11, 2017
 Part 2: Wednesday, October 18, 2017
Points: 40

For this assignment, you are to implement the List ADT in a file called list.c using the header file

list.h. You can find this header file on zeus in /home/CS300Public/2017/04Files. All of the

data structures and function prototypes are defined in list.h. Further, each function prototype has

been described to the point that you should be able to implement each list function in the file list.c.

In addition to implementing the list data structure, you must provide a Makefile and test driver

(listdriver.c that produces an executable named listdriver) that thoroughly tests your list

functions. The listdriver must display to the screen a series of SUCCESS or FAILURE messages with

enough description that a user can quickly spot broken list functionality. Code your driver for

SUCCESS tests. If a FAILURE happens, your program is to terminate.

You may add any helper static functions you need to list.c. You may not alter list.h in anyway.

1. Your code is to be written in C using Eclipse. Programs written in other environments will
not be graded. Create an Eclipse project named GenericDynamicList. This project must
contain the directories: src, include, and bin.

2. The Makefile must contain the necessary targets to build the listdriver as well as a clean,
valgrind, and tarball targets. Typing make on the command line must build listdriver in the
bin directory.

3. Your program must not have any Valgrind errors.

4. Submit a color, double-sided, stapled packet of code by that same deadline. The packet
must be in the following order:

 List Driver (.h then .c if you have both, otherwise just .c)
 list.c (do not print list.h)
 Any extra .h/.c modules
 Makefile

5. Test one function at a time and profile with Valgrind. This will lessen your level of
frustration greatly. Commit after writing and testing a significant function. You will not be
sorry.

6. You are to use the coding guidelines of the coding standards on the CS300 Web page.

 Goals for this assignment:

1. Code and test your program one function at a time.
2. Write efficient/clean code
3. Use the debugger and Valgrind to effectively develop a correct solution
4. Thoroughly test your code.
5. Fully understand Makefiles.

The list.h header file as well as a list of error codes that each function can produce are part of
list.h. Further, the error codes are listed in order of precedence. If a function can produce
multiple errors, the function must return the error code first on the list.

Since the interface for the list may be hard to understand at first, here is a very small example
of how to walk a list and print out every element. For brevity, no error checking is done.

Sample Code

Run Results of

Sample Code

Part A: Here is a list of the functions that must be completed for Part A and the order in which I
recommend you implement each function:

1. lstLoadErrorMessages
2. lstCreate
3. lstInsertAfter
4. lstTerminate
5. lstSize
6. lstIsFull
7. lstIsEmpty
8. lstFirst
9. lstNext

Submit your assignment as cs300_4A_punetid.tar.gz

Part B: Implement all functions in list.h and write a driver that thoroughly tests all functions.
Submit your solution as cs300_4B_punetid.tar.gz.

If you found Part A pretty easy, don’t be fooled that Part B will be just as easy. Specifically,
lstInsertBefore and lstDeleteCurrent are extremely hard. The debugging challenges for Part B
are much harder than Part A. Over the years I have written a solution to this assignment
multiple times, and this time I still had some difficult errors to find. What makes debugging
especially difficult is void * is a typeless pointer. In the debugger, you will need to enter
expressions in the Expressions tab. As I was debugging, here is an example of what my
Expressions tab looked like:

If you have Makefile problems, see me early. I do not want to see more code in your project
than list.h, a single function lstCreate in list.c, and a single call to lstCreate in listdriver.c. I’m not
trying to be difficult, but the more code you have, the harder it is to fix a Makefile problem.

I expect you to start this project early. This code will be reused in subsequent assignments.
Coding this last minute will cause headaches for much of the rest of the course!!!!! You’ve been
warned.

