
HASH TABLES

http://en.wikipedia.org/wiki/Hash_table

1

Hash Table

● A hash table (or hash map) is a data structure

that maps keys (identifiers) into a certain

location (bucket)

● A hash function changes the key into an index

value (or hash value)

2

Hash
Function

Ryan, D

Williams, C

Khoja, S

hash(Ryan, D) = 01
hash(Williams, C) = 06
hash(Khoja, S) = 03

Keys

The Hash Table has a
fixed length. We'll see
how to add space
dynamically later.

Hash Tables

Bucket Data

01 Ryan, D

02

03 Khoja, S

04

05

06 Williams, C

07

3

4

A Problem

• We want to create a fast dictionary that we can use to look
up the definition of 2-letter words (e.g. on, to, so, no).

• The number of possible words is 26 * 26 = 676.

• Create an array with 676 entries.

• Write a function to map each 2-letter word to a unique
integer number within the array range [0, 675].

• Use the integer as an index to the array, and place the
definition of the word into that array position.

5

A Solution

0

352

377

508

675

on

to

no

def on

def no

def to

• Function:

26 * (c1 – ‘a’) + (c2 – ‘a’)

Result for “no”:

26 * (‘n’ – ‘a’) + (‘o’ – ‘a’) =

26 * (14 – 1) + (15 – 1) = 352

Result for “on” = 377

Result for “to” = 508

6

Another Problem

• Q. How big would the hash table be if we wanted to store every
word in the English language? Keep in mind that the longest
word in the dictionary has 45 letters.

• The longest word in the dictionary is
pneumonoultramicroscopicsilicovolcanoconioisis and it’s a type
of lung disease.

• The size of the table needed to store all English words of 45
letters or less is 2645.

• Of course it is impossible to create and store such a large table,
and it would also be wasteful since fewer than a million of those
words would be valid English words.

• What is the solution? Use a different hash function!

7

A Solution

• Create an array large enough to hold all the words in the English language.

• Map the words to the array indexes using a hash function.

• H (key) = key mod table-size

• A hash function should:

• Be easy to implement and quick to compute.

• Achieve an even distribution over the hash table.

• The table-size is normally chosen to be a prime number to avoid uneven

distribution

8

A Simple Example

0

1

2

3

4

5

6

7

8

9

10

11

91
36

10

36

77

9

83

83

10

9

91

77

9

Hash Functions

• Hash function:

• key % table-size = array index

• 10 % 12 = 10

91 % 12 = 7

83 % 12 = 11

36 % 12 = 0

77 % 12 = 5

9 % 12 = 9

0

1

2

3

4

5

6

7

8

9

10

11

36

83

10

9

91

77

10

Collision

• What happens when we try and map the

following keys onto the same array?

0

1

2

3

4

5

6

7

8

9

10

11

36

83

10

9

91

77

48

65

27

This is called a collision!

11

Avoiding Collision

• We could try to avoid this collision by using a different hash

function.

• Choosing a good hash functions is hard, so instead, we

concentrate on how to resolve collisions.

Collisions

● Perfect Hash - each key maps to an empty

bucket

● Rare!

● Collisions occur where two different keys map

to the same bucket

● Solution?

12

Hash Function

● Hash function – compute the key's bucket

address from the key

● some function h(K) maps the domain of keys K

into a range of addresses 0, 1, 2, … M-1

● The Problem

● Finding a suitable function h

● Determining a suitable M

● Handling collisions

13

Hash Function

● Mid Square

● (turn the key into an integer)

● square the key

● take some number of bits from the center to form

the bucket address

Advantages?

Disadvantages?

14

Example

● Problem: Let's assume that the key value is

simply the sum of the ASCII values squared. If

the key value is 16-bits and we take the middle

8-bits:

● How big is the hash table?

● What is the range of bucket addresses?

● Where does the key AB map to in the hash table?

15

Implementation section 2.9 of K&R

● How do we access the middle 8 in an integer?

● // assume 4 byte integers

unsigned int key = 0x1231a456;

unsigned int middle;

middle = (key & 0x000ff000) >> 12;

printf("%08x %08x\n", key,

middle);

http://www.eskimo.com/~scs/cclass/int/sx4ab.html

One Hex-digit
is 4 bits

pad with zero 8 wide hexadecimal output

16

Hash Function

● Division Hashing

● bucket = key % N

● N is the length of the hash table AND a prime number

a) How big is the hash table?

b) What is the range of bucket addresses?

c) Where does the key AB map to in the hash
table?

Advantages?

Disadvantages?

17

18

Collision Handling Techniques

• Open Addressing: if a collision occurs, then an empty slot
is used to store the record. Techniques for selecting the
empty slot include:
• Linear Probing.

• Quadratic Probing.

• Re-hashing (double hashing).

• Separate Chaining: if a collision occurs, then this new
record is attached to the existing record in the form of a
chain (linked list). This way, several records will share a
slot.

Collision Handling

● Open Addressing

● If both K and C map to the same bucket we have a
collision

– K and C are distinct

– K is inserted first

● To resolve using OA, find another unoccupied space
for C

BUT: We must do this systematically so we can find C
again easily!

● Analysis: (summation of the # of probes to locate
each key in the table) / # of keys in the table

19

Open Addressing

● Find another open bucket

● bucket = (h(K) + f(i)) % N

● N is the length of the table

● h(K) : original hash of key K

● f(i) : i is the number of times you have hashed and

failed to find an empty slot

● First hash is:

– bucket = (h(K) + f(0)) % N

– f(0) = 0

20

21

Linear Probing

• If a collision occurs, then the next empty slot that is found

is used to store the data item.

• If position h(n) is occupied, then try

• (h(n) + 1) mod table-size,

• (h(n) + 2) mod table-size,

• and so on until an empty slot is found.

• Problems with linear probing include:

• Formation of bad clusters.

• Since gaps are being filled, the collision problem is exacerbated.

Linear Probing

● f(i) = i

● Example:
h(Kn) = n % 11

● Insert
M13
G7
Q17
Y25
R18
Z26
F6

Bucket Data

0

1

2

3

4

5

6

7

8

9

10

Primary Clustering!

22

