
CS300 Exam1 Review 

1. What is Linux kernel? 

2. What is the shell? Give several shell commands. 

3. Linux commands to get around in the file system. 

4. scp command 

5. difference between scp and ssh 

6. pre-processor, compiler, linker, loader 

7. uses of and why use #define, static 

8. Be able to explain everything in the following makefile … for example 

… what is a target, what is a dependency, how are they used, what is -

Wall, what is -g, why use ${CC}, why isn't stk.o a dependency for 

palindromeChecker.o, … 

 
9. What is a data structure? 

10. What is an ADT? 

11. Why use ADTs? 

12. Assume the implementation for the String ADT below. 

Implement each of the string functions from the String ADT using this 

representation for a String. 

 



13. Review the Stack ADT and think how else you might want to 

represent a Stack. There are many. For instance, using a single simple 

one-dimensional array and no struct. 

14. What is the heap? Activation Record (AR)? malloc? free? static 

versus dynamic memory? 

15. Define a struct Person that can hold a name, age, and gender. 

16. Define a struct pointer type that can point to a Person struct. 

17. Create a pointer to a Person struct and an actual Person 

variable. 

18. Dynamically create memory for a Person and set the pointer to 

the dynamically allocated memory. 

19. null pointer, void pointer, dereference, array of void *’s, buffer 

20. Write an algorithm that determines whether a string of 

characters is of the form x R y where y is the reverse of x. You can 

only read one character at a time from the keyboard. So for instance, 

if the user enters abRba that is an acceptable string while abRab is 

not. 

21. Assume all stack operations from assignment 2 have been 

implemented. Write the C code to implement your algorithm from 20. 

22. Write an algorithm that determines whether a string of 

characters is of the form a R b R c R d R e R …. where R is defined as 

in question 20. 

23. Assume all stack operations from assignment 2 have been 

implemented. Write the C code to implement your algorithm from 22. 


