
Hash Tables

Date assigned: Wednesday, November 16, 2016

Date Due: Monday, December 5, 2016
 There is no late grace period for this final assignment

Points: 50

Hash Table

You are to design and implement a Hash Table ADT. The HT must use chaining
for collision handling and rely on your Dynamic List to implement chaining for

collision handling. The key to the HT is a char * that is to be dynamically
allocated to be the size of the key plus the null termination when placed in the HT.

Associated data is to be placed in the HT after the key.

The user of the HT must supply the hash function to the HT as a function pointer

and a compare function as a function pointer to compare keys in the HT during
the htCreate function call. You need to design the hash table header file

consisting of the data structure(s) as well as the functions for the HT. The
functions names are to be htName, so for instance, htCreate, htTerminate, …

The HT has the expected set of functions to:

a) create a HT

b) terminate a HT
c) insert a key of max length 64 (and associated data) into the HT

d) delete a key (and associated data) from the HT returning the data
e) update a key’s data

f) find a key in the HT returning the key’s data
g) check if the HT is empty

h) check if the HT is full

i) print the HT
j) any other functions you so desire pertaining to a HT

In addition to implementing the data structure, you must provide a Makefile and

test driver (htDriver.c that produces an executable named htdriver) that
thoroughly tests your data structure.

Renumber Program

Sooooo, what are we going to do with our hash table once it’s implemented?

The introduction of microcomputers in the mid-1970s was the start for the

explosive growth of the BASIC programming language. Here is a BASIC program
(fact.bas) to find the factorial of a number.

Notice that each line has an associated line number.

We used to have to type in a line number and then the BASIC code. You can
imagine that the line numbering scheme gets messy and in some cases, one can

even run out of line numbers. For instance, we can only put 4 more lines between
line 10 and line 15. It would be nice to have a renumbering program and that’s

what I’m asking you to write.

Your renumbering program will be run as follows:

renumber inputprogram outputprogram startnumber incrementnumber

where renumber is the name of the renumbering program
 inputprogram is the BASIC program that is to be renumbered

 outputprogram is the renumbered BASIC program

 startnumber is the first statement number in outputprogram
 incrementnumber is the value to add to the subsequent line number

As an example, renumber fact.bas rfact.bas 100 10 will renumber a program

called fact.bas in rfact.bas where the first line number will be 100, the second line
number will be 110, then 120, and so on.

There are five kinds of statements that we will handle that can cause problems

during the renumbering process:

1. if expression then ###
2. gosub ###

3. goto ###
4. on expr goto ### {, ###, …}

5. on expr gosub ### {, ###, …}

For this assignment, you are to assume that the program will be well-formed.

There will not be any syntax errors in the input program and there cannot be any

syntax errors in the output program following the execution of your renumbering

program. There will be one BASIC statement per line. Line numbers are in the
range of 0 to 99999 inclusive.

I will test your renumbering program using Chipmunk BASIC which can be found

at http://www.nicholson.com/rhn/basic.html. You can simply download the
correct version of Chipmunk BASIC and run any syntactically correct BASIC

program. For instance, to run the above program, use a text editor to type in the
program as you see it. Then execute the following commands:

./basic fact.bas OR ./basic

quit load “fact.bas”
 run

 quit

Here’s how to run a Chipmunk BASIC program:

Notes:

1. You will need at least two modules other than your list module. You will need a
hash table module (HashTable) and a renumber module (Renumber) for sure.

2. Submit a file called cs300_7_PUNetID.tar.gz by 9:15am on the due date.
This file must include at least the two new projects you are to write as well as

GenericDynamicList. Each project is to be complete such that I can type make
in any of the projects and execute any driver I so desire. Make sure you have all

dependencies set correctly and that each Makefile builds the appropriate object
files before building the executable. Also, each module's Makefile must have a

target called valgrind such that typing make valgrind executes the valgrind
command. I will clean all projects BEFORE typing make in the Renumber project.

Data file input is to be from the command line.

http://www.nicholson.com/rhn/basic.html

Turn in a color, double sided, stapled packet of code by the same deadline in 1.

The packet must be in the following order:
renumber.c (.h then .c if you have both, otherwise just .c)

ht.c (.h then .c if you have both)
Any extra .h/.c pairs you have. (do not include any code from previous

projects)
New Makefiles printed in any order

Character Processing in C

You will most likely need to make 2 passes over the BASIC program. rewind sets

the file position back to the beginning of the stream.

