
 1

Assignment #2

Topic(s): C, Makefiles, Writing modular code, Stack ADT
Date assigned: Friday, September 9, 2016
Date due: Wednesday, September 21, 2016
Points: 25

The purpose of this assignment is to have you implement a Stack ADT using a static array of pointers and

typeless dynamic memory. This way, you can push any datatype onto your stack; that is, your stack is generic!!!!

How cool is that???

Specifically, for this assignment you will:

1) create a project called GenericStaticStack using:

a. an include file called sstk.h, which is the stack interface

b. a source file sstk.c which is the stack implementation

c. a source file sstkdriver.c which is the stack driver

d. a make file called Makefile that is used to build all object files and executables for the project

2) A copy of sstk.h is shown below and also exists on zeus in /home/CS300Public/2016/02Files. You are

to copy sstk.h from zeus and implement each function prototype specified in sstk.h in a file called sstk.c.

Do not modify sstk.h in any way or you will lose significant points.

 2

 3

Here is a simple driver that tests some of your stack functions.

To successfully complete this portion of the assignment:

1. Implement each of the functions for sstk.h one at a time in a file called sstk.c. Test each

function in a driver sstkdriver.c. Create a Makefile for the project GenericStaticStack.
2. Once you have implemented each function, you are to write a driver that extensively tests

each of the functions in your program. Part of your grade will be based on how well your
driver tests each and every function listed above. Note: The driver that I supplied you is not

 4

good for testing your project.

Part A (Due: Friday, September 16, 2016)

For this part of the assignment, you are to implement stkLoadErrorMessages, stkCreate,
stkTerminate, and stkSize. Your driver is to test each of these functions for correctness. Once
you have completed this portion of the assignment, you are to submit your solution. To do so,

1) create a tarball called cs300_2A_punetid.tar.gz (that is “your” punetid) that contains
all files for correctly compiling your program on zeus. How to do this:

a. at the level of GenericStackStack (after cleaning your project), type the
command: tar czf cs300_2A_punetid.tar.gz GenericStaticStack

2) use scp to transfer the tarball to zeus for testing
3) once you are sure your program works on zeus from the command line, then submit

your tarball as you did in assignment #1

Part B (Due: Wednesday, September 21, 2016)

Implement the rest of the functions for sstk.c and write a driver that extensively tests each of
your functions. I will write several test drivers to test your program when grading.

As in part A, create a tarball called cs300_2B_punetid.tar.gz, move a copy to zeus for testing
BEFORE submitting your final solution.

If you find any mistakes or you think there are discrepancies, please email me ASAP. I will
check into your issue, fix as necessary, and email the entire class if changes are made.

Hints:

1) Many of you will find that setting up your project correctly in Eclipse (including a
proper Makefile) will be difficult & frustrating. The sooner you get this set up, the
better AND you can see me EARLY for questions. In fact, I’m going to help you by giving
you my Makefile in /home/CS300Public/2016/02Files

2) Pointers may also be another level of frustration, so here is a little sample code that, if
you understand the code, will help you with the programming portion of part B:

3) You will need to use memcpy

typedef struct String *StringPtr;

typedef struct String

{

 char data[32];

 int size;

} String;

…

String sTheString;

StringPtr psTheString = &sTheString;

psTheString->data[0] = ‘\0’; // Now sTheString is the null string

psTheString->size = 0;

strcpy (psTheString->data, “Hello CS300”);

psTheString->size = strlen (psTheString->data);

puts (psTheString->data);

