(s
s

<)

More BSTs & AVL Trees {
Lf (key not found) bstDelete

return

else if (either subtree is empty)

{
delete the node replacing the parents link with the
ptr to the nonempty subtree or NULL if both
subtrees are empty

}

else
{
Traverse the left subtree of the node to be deleted
such that you find the rightmost node (Rnode) in the left
subtree

(@

Move the contents of Rnode to the node to be deleted

Set Rnode's parent pointer to point to the left subtree
of Rnode

Free the unused node cs300 Data Structures (Fall 2014)
1

bstDelete

* Create a BST from the following keys: 10, 5, 15, 2, 8, 12, 7, 16,
14

* Assume that you always start with the above tree, how would
each of the following keys be deleted?

> 10
»> 15
> 5

CS300 Data Structures (Fall 2014)

AVL Trees
Adelson-Velskii & Landis

Defn: A binary tree is a height-balanced p-tree if for
each node in the binary tree, the difference in the
height of the left and right subtrees is at most p.

Defn: An AVL (Adelson-Velskii, Landis) tree is a
binary search height-balanced 1- tree.

Defn: The balance factor of a node, BF(node), in a
binary tree is the difference of the left and right
subtrees, hL - hR.

For any node in an AVL tree, the balance factor is
either -1, O, or 1.

CS300 Data Structures (Fall 2014)

AVL Trees

* After inserting a new value into an AVL tree, if any
node has a BF other than -1, O, or 1, the AVL tree
must be rebalanced.

* The AVL tree is rebalanced at the closest ancestor, of
the inserted node, that has a BF of -2 or +2. We will
call the closest ancestor with a BF of +2 or -2 of the
inserted node the pivot node, P.

* Four basic rotations are possible where two are
single rotations and two are double rotations.

CS300 Data Structures (Fall 2014)

AVL Trees

Red Circle: Black line:
Pivot Node (BF = 1 or <-1) Tree connections
Green Circle: Blue line:
Node with BF of -1, 0, or 1 Path from pivot to added nodes.
Blue border: L Blue letters:
Newly added node Direction of path to added node.
Greyed Out Circle: Brackets:
Node not in the rotation trio. :| Depth of subtrees. Color indicates
(Color based on original parent. validity of resultant BF.
Attachments may change)
Calculation®
Blue/purple circle and arrow: 3-1=2 Balance Factor calculation.
Indicates the nodes being rotated.
Arrow indicates direction.

Rotation 1 is blue, rotation 2 is purple.

The following diagrams were made by Alex Shinsel

CS300 Data Structures (Fall 2014)

AVL Trees
LL Rotation

CS300 Data Structures (Fall 2014)

AVL Trees
LL Rotation

We/don't care about this right now.
We're only concerned with the FIRST

3.1=2 nodewitha BF =1 or =-

L]

b

= Direction doesn’t
matter: only the first
two moves from the
pivot node count

@.5

b a

L]
L]

CS300 Data Structures (Fall 2014)

L]

b

AVL Trees
RR Rotation

CS300 Data Structures (Fall 2014)

AVL Trees
RR Rotation

+) | b -
C d b . a b |

CS300 Data Structures (Fall 2014)

AVL Trees
LR Rotation

CS300 Data Structures (Fall 2014)

AVL Trees
LR Rotation

3.1=2 :
{ . (; ‘7

CS300 Data Structures (Fall 2014)

AVL Trees
RL Rotation

0-2=-2
0 2
1-0=1 ‘L"\ : . \ 7
E:'.;:," / \
(- 0 \ [& |
¥) ; : 7,

/@

CS300 Data Structures (Fall 2014)

AVL Trees
RL Rotation

CS300 Data Structures (Fall 2014)

Problems

Q1: Is the tree an AVL tree? Why or why not?

o Consid er Q2: Does the tree need any kind of rebalancing? If so,
rebalance the tree.

P1: Insert z into the tree.

/ \ Q3: Does the resulting tree need rebalancing? Why or
why not? If so, rebalance the tree.

P2: Insert a into the tree.

Q4: Does the resulting tree need rebalancing? Why or
why not? If so, rebalance the tree.

P3: Starting over, insert j and g into the tree. Rebalance
when necessary.

P4: Starting over, insert j and a into the tree. Rebalance
when necessary.

CS300 Data Structures (Fall 2014)

Problems

* Insert the following months into an AVL tree
lexicographically: Mar, May, Nov, Aug, Apr, Jan,
Dec, Jul, Feb, Jun, Oct, Sep

*If a rebalance is needed, show the proper
rebalance notation for the type of rebalance
applied to the AVL tree

CS300 Data Structures (Fall 2014)

