
More BSTs & AVL Trees
bstDelete

CS300 Data Structures (Fall 2014)

if (key not found)

 return

else if (either subtree is empty)

{

 delete the node replacing the parents link with the

 ptr to the nonempty subtree or NULL if both

 subtrees are empty

}

else

{

 Traverse the left subtree of the node to be deleted

 such that you find the rightmost node (Rnode) in the left

 subtree

 Move the contents of Rnode to the node to be deleted

 Set Rnode's parent pointer to point to the left subtree

 of Rnode

 Free the unused node

}

bstDelete

• Create a BST from the following keys: 10, 5, 15, 2, 8, 12, 7, 16,
14

• Assume that you always start with the above tree, how would
each of the following keys be deleted?

 10

 15

 5

CS300 Data Structures (Fall 2014)

AVL Trees
Adelson-Velskii & Landis

• Defn: A binary tree is a height-balanced p-tree if for
each node in the binary tree, the difference in the
height of the left and right subtrees is at most p.

• Defn: An AVL (Adelson-Velskii, Landis) tree is a
binary search height-balanced 1- tree.

• Defn: The balance factor of a node, BF(node), in a
binary tree is the difference of the left and right
subtrees, hL - hR.

• For any node in an AVL tree, the balance factor is
either -1, 0, or 1.

 CS300 Data Structures (Fall 2014)

AVL Trees

• After inserting a new value into an AVL tree, if any
node has a BF other than -1, 0, or 1, the AVL tree
must be rebalanced.

• The AVL tree is rebalanced at the closest ancestor, of
the inserted node, that has a BF of -2 or +2. We will
call the closest ancestor with a BF of +2 or -2 of the
inserted node the pivot node, P.

• Four basic rotations are possible where two are
single rotations and two are double rotations.

CS300 Data Structures (Fall 2014)

AVL Trees

CS300 Data Structures (Fall 2014)

The following diagrams were made by Alex Shinsel

AVL Trees
LL Rotation

CS300 Data Structures (Fall 2014)

AVL Trees
LL Rotation

CS300 Data Structures (Fall 2014)

AVL Trees
RR Rotation

CS300 Data Structures (Fall 2014)

AVL Trees
RR Rotation

CS300 Data Structures (Fall 2014)

AVL Trees
LR Rotation

CS300 Data Structures (Fall 2014)

AVL Trees
LR Rotation

CS300 Data Structures (Fall 2014)

AVL Trees
RL Rotation

CS300 Data Structures (Fall 2014)

AVL Trees
RL Rotation

CS300 Data Structures (Fall 2014)

Problems

• Consider

 m

 / \

 f n

 /

 c

CS300 Data Structures (Fall 2014)

Q1: Is the tree an AVL tree? Why or why not?

Q2: Does the tree need any kind of rebalancing? If so,
rebalance the tree.

P1: Insert z into the tree.

Q3: Does the resulting tree need rebalancing? Why or
why not? If so, rebalance the tree.

P2: Insert a into the tree.

Q4: Does the resulting tree need rebalancing? Why or
why not? If so, rebalance the tree.

P3: Starting over, insert j and g into the tree. Rebalance
when necessary.

P4: Starting over, insert j and a into the tree. Rebalance
when necessary.

Problems

• Insert the following months into an AVL tree
lexicographically: Mar, May, Nov, Aug, Apr, Jan,
Dec, Jul, Feb, Jun, Oct, Sep

•If a rebalance is needed, show the proper
rebalance notation for the type of rebalance
applied to the AVL tree

CS300 Data Structures (Fall 2014)

