
Trees 
 

Until now, we have dealt with linear data structures such as: 

●arrays 

●linked lists 

●stacks 

●queues 

 

A tree is:  

● a nonlinear data structure where members may have multiple 

successors 

● a data structure made up of nodes.  
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Tree Terminology 

root – unique starting node 

parent – predecessor of a node 

child – successor of a node 

leaf – a node with no children 

siblings – two nodes with the same parent 

ancestors – let A be an arbitrary node of a tree. If A is the root 

node, then A has no ancestors; otherwise, the parent of A and all 

ancestors of A's parent are ancestors of A 

 

What kind of definition is ancestor? 
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Tree Terminology 

descendants – let B be an arbitrary node of a tree. If B is a leaf 

node, then B has no descendants; otherwise, each child of B and 

all descendants of each child of B are descendants of B. 

subtree – an arbitrary node in the tree and all descendants of that 

node 

level – the root node is level 1 and every other node in the tree is 

at level n where n is the number of nodes in the path from the root 

node to the node in question 

depth (or height) – maximum level of any node in the tree 
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Identify Tree Attributes 

For the given tree, identify: 

a) root 

b) parent of E 

c) children of A 

d) leaf nodes 

e) any two siblings 

f) ancestors of B 

g) descendants of F 

h) level of D 

I) depth of the tree 
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Binary Tree 

Characteristics of a binary tree: 

a) Each parent can have at most two children 

b) A binary tree can be empty 

c) If a binary tree has two children, the child on the 

left is the ″left child″ and the one on the right is the 

″right child″ 

 

Note: The left child is the root of the left subtree 

and the right child is the root of the right subtree 
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Some Binary Tree Operations 

Before defining the Binary Tree ADT, let's work a few problems. 

 

1) Write the appropriate data structure definitions for a binary tree. 

2) We can define three traversal methods for a binary tree: 

a) inorder: Left, Visit, Right 

b) preorder: Visit, Left, Right 

c) postorder: Left, Right, Visit 
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Identify 

For the following binary tree, identify the inorder, 

preorder, and postorder traversals. 

 

Write a C function that performs an inorder 

traversal of a binary tree. 
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Binary Search Tree (BST) 

Definition 

Consider an arbitrary node in a tree called A. 

 

All values in the left subtree are less than the value in 
A. 

 

All values in the right subtree are greater than the 
value in A. 
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Create BST 

Create a BST for the following strings (note: apr < 
jan): 

 

jan, feb, mar, apr, may, jun, jul, aug, sep, oct 

nov, dec 
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Traversals 

If visiting a node means printing the contents of the 
node, show each of the following traversals of the 
newly created BST. 

 

• preorder 

• inorder 

• postorder 
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BST Functions 

• Write an algorithm for bstInsert. 

• What is the worst case computing complexity of 
your algorithm? Why? 

• Write the C function bstInsert. 

• Write a C function bstFindLevel that returns the 
level of a node in a BST. 

• Write a C function btFindLevel that returns the level 
of a node in a binary tree. 
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