
Trees

Until now, we have dealt with linear data structures such as:

●arrays

●linked lists

●stacks

●queues

A tree is:

● a nonlinear data structure where members may have multiple

successors

● a data structure made up of nodes.

CS300 Data Structures (Fall 2014)

Trees

CS300 Data Structures (Fall 2014)

Tree Terminology

root – unique starting node

parent – predecessor of a node

child – successor of a node

leaf – a node with no children

siblings – two nodes with the same parent

ancestors – let A be an arbitrary node of a tree. If A is the root

node, then A has no ancestors; otherwise, the parent of A and all

ancestors of A's parent are ancestors of A

What kind of definition is ancestor?

CS300 Data Structures (Fall 2014)

Tree Terminology

descendants – let B be an arbitrary node of a tree. If B is a leaf

node, then B has no descendants; otherwise, each child of B and

all descendants of each child of B are descendants of B.

subtree – an arbitrary node in the tree and all descendants of that

node

level – the root node is level 1 and every other node in the tree is

at level n where n is the number of nodes in the path from the root

node to the node in question

depth (or height) – maximum level of any node in the tree

CS300 Data Structures (Fall 2014)

Identify Tree Attributes

For the given tree, identify:

a) root

b) parent of E

c) children of A

d) leaf nodes

e) any two siblings

f) ancestors of B

g) descendants of F

h) level of D

I) depth of the tree
CS300 Data Structures (Fall 2014)

Binary Tree

Characteristics of a binary tree:

a) Each parent can have at most two children

b) A binary tree can be empty

c) If a binary tree has two children, the child on the

left is the ″left child″ and the one on the right is the

″right child″

Note: The left child is the root of the left subtree

and the right child is the root of the right subtree
CS300 Data Structures (Fall 2014)

Some Binary Tree Operations

Before defining the Binary Tree ADT, let's work a few problems.

1) Write the appropriate data structure definitions for a binary tree.

2) We can define three traversal methods for a binary tree:

a) inorder: Left, Visit, Right

b) preorder: Visit, Left, Right

c) postorder: Left, Right, Visit

CS300 Data Structures (Fall 2014)

Identify

For the following binary tree, identify the inorder,

preorder, and postorder traversals.

Write a C function that performs an inorder

traversal of a binary tree.

CS300 Data Structures (Fall 2014)

Binary Search Tree (BST)

Definition

Consider an arbitrary node in a tree called A.

All values in the left subtree are less than the value in
A.

All values in the right subtree are greater than the
value in A.

CS300 Data Structures (Fall 2014)

Create BST

Create a BST for the following strings (note: apr <
jan):

jan, feb, mar, apr, may, jun, jul, aug, sep, oct

nov, dec

CS300 Data Structures (Fall 2014)

Traversals

If visiting a node means printing the contents of the
node, show each of the following traversals of the
newly created BST.

• preorder

• inorder

• postorder

CS300 Data Structures (Fall 2014)

BST Functions

• Write an algorithm for bstInsert.

• What is the worst case computing complexity of
your algorithm? Why?

• Write the C function bstInsert.

• Write a C function bstFindLevel that returns the
level of a node in a BST.

• Write a C function btFindLevel that returns the level
of a node in a binary tree.

CS300 Data Structures (Fall 2014)

