
STACK ADT

1 CS300F14

Stack

• The stack is a LIFO (Last-in First-out) linear data

structure.

• The only data element that can be removed is the most

recently added element.

2 CS300F14

Stack ADT Specification

• Elements: Stack elements can be of any type, but we will

assume StackElement.

• Structure: Any mechanism for determining the elements

order of arrival into the stack.

3 CS300F14

Stack ADT Continued

• Domain: The number of stack elements is bounded. A

stack is considered full if the upper-bound is reached. A

stack with no elements is considered empty.

• Operations: There are seven operations as follows:

4 CS300F14

Stack ADT Continued

function create (s: Stack, isCreated: boolean)

results: if s cannot be created, isCreated is false;

otherwise, isCreated is true,the stack is created and is

empty

function terminate (s: Stack)

results: stack s no longer exists

5 CS300F14

Stack ADT Continued

function isFull (s: Stack)
results: returns true if the stack is full; otherwise false is
returned

function isEmpty (s: Stack)
results: returns true if the stack is empty; otherwise, false
is returned

function push (s: Stack, e: StackElement)
requires: isFull (s) is false
results: element e is added to the stack as the most
recent element

6 CS300F14

Stack ADT Continued

function pop (s: Stack, e: StackElement)

requires: isEmpty(s) is false

results: The most recently added element is removed and

assigned to e

function peek (s: Stack, e: StackElement)

requires: isEmpty(s) is false

results: The most recently added element is assigned to

e but not removed

7 CS300F14

Testing your Data Structure

• Your customer will abuse your data structure

• Your data structure should never crash the customer's

code

• code defensively

• Test each each function

• test each function’s requires statement

• test boundary conditions (full/empty)

• test bad input

• test functions called in the wrong order

8 CS300F14

What are Stacks Useful for?

• Web browser history.

• “undo” in applications.

• Memory stack.

9 CS300F14

Ex. 1: Converting Decimal to Binary

• Here is an algorithm for converting a decimal number to

its binary equivalent:

• Read a number

• While number is greater than 0

• Find the remainder after dividing the number by 2

• Print the remainder

• Divide the number by 2

• End the iteration

• What is the problem with this algorithm?

• How can a stack be used to fix the problem?

10 CS300F14

Ex. 2: Balancing Parentheses

• Parentheses in algebraic expressions need to be

balanced in order for the expression to be correct.

• Which of the following are valid expressions?

• {a^2 - [(c - d)^2 + (e - f)^2] }

• {a - [(b + c))) - (d + e)] }

• {a - [[[(b + c) - (d + e)] }

• {a - [(b + c) - (d + e) }]

• How can a stack be used to test if an expression’s

parentheses are balanced?

11 CS300F14

Stack Representation

• In stk.h

#define MAX_STACK 1024

#define TRUE 1
#define FALSE 0

typedef short int BOOLEAN;
typedef char DATATYPE;

typedef struct Stack
{
 int top;
 DATATYPE data[MAX_STACK];
} Stack;

12 CS300F14

Stack Functions

BOOLEAN stkCreate (Stack *);

BOOLEAN stkTerminate (Stack *);

BOOLEAN stkIsFull (Stack *);

BOOLEAN stkIsEmpty (Stack *);

BOOLEAN stkPush (Stack *, DATATYPE);

BOOLEAN stkPop (Stack *, DATATYPE *);

BOOLEAN stkPeek (Stack *, DATATYPE *);

13 CS300F14

Balancing Parentheses

• Assume that all of the functions have been implemented,

how are you going to use a stack to test if parentheses

are balanced?

14 CS300F14

