
Priority Queue

Topic(s): Priority Queues, Code Reusability
Date assigned: Friday, October 10, 2014
Date due: Monday, October 20, 2014, 9:15 am
Points: 40 pts

For this assignment, you are to implement a Priority Queue ADT in a file called pQueue.c using the

header file pQueue.h. You can find this header file, as well as a pQueue.c file, on zeus in

/home/CS300Public/2014/Assign5Files. All of the data structures and function prototypes are

defined in the header file. Further, each function prototype has been described to the point that

you should be able to implement each function. The error codes that can be produced are listed

for each function. Higher precedence error codes are listed first. The pQueue.c file contains data

and a function to help you display error messages to the screen.

The Priority Queue must be implemented using the Dynamic List from the previous assignment as

the base data structure. A new list.h will be provided on zeus to allow the Dynamic List to store

Queue data. In particular, in list.h DATATYPE is updated and Q_DATAYPE is added. We will be

reusing this Priority Queue later on, so make sure you have completely tested and debugged each

operation. For simplicity, the priority queue will store a single integer value of user data as well

as a priority.

In addition to implementing the Priority Queue data structure, you must provide a Makefile and

test driver (pQueueDriver.c that produces an executable named pQueueDriver) that thoroughly

tests your Priority Queue. The driver should display to the screen a series of SUCCESS or FAILURE

messages with enough description that a user can quickly spot broken functionality.

You may add any helper functions you need to pQueue.c. These helper functions must be marked

static so they are not available outside the module. You may not alter pQueue.h in any way.

1. Your code is to be written in C using Eclipse. Programs written in other environments will
not be graded. Create an Eclipse project named DynamicPriorityQ. This project must
contain the directories: src, include, and bin. The driver, pQueueDriver, must be created at
the top level of the project, not in the bin directory.

2. The Makefile must contain the necessary targets to build the pQueueDriver as well as a
clean, valgrind, and tarball targets. Typing make on the command line must build
pQueueDriver.

3. Submit a file called cs300_5_PUNetID.tar.gz into the CS300 Drop Box by 9:15am on the day
in which the assignment is due. This file must include your DynamicPriorityQ AND your
updated DynamicList projects.

4. Submit a color, double sided, stapled packet of code by that same deadline. The packet
must be in the following order:
 Priority Queue Driver (.h then .c if you have both, otherwise just .c)
 pQueue.c (do not print pQueue.h)
 Any extra .h/.c pairs you have. (do not include any code from the List project)
 Makefile

5. Test one function at a time. This will lessen your level of frustration greatly.

6. You are to use the coding guidelines from V6.3 of the coding standards.

7. The only changes to DynamicList you can make are to insert the new list.h file from zeus
and fix bugs.

8. You must insert DynamicPriorityQ into your Subversion repository; DynamicList should
already be in Subversion and any bug fixes must be committed to Subversion.

9. IMPORTANT: When implementing your priority queue ADT, you are to use the functions
from the DynamicList API and not access any DynamicList data directly. As an example, the
function pqueueSize could access numElements of the DynamicList directly BUT must not.
Instead, the function lstSize is to be used. You must have at least 10 commits on 3
different dates after today and show me by 3pm Friday, October 17, 2014.

Goals for this assignment:

1. Reuse your DynamicList API.

2. Code and test your program one function at a time.

3. Write efficient/clean code

4. Use the debugger to effectively develop a correct solution

5. Thoroughly test your code.

6. No Valgrind errors.

Priority in the Queue.

You must implement priority in your queue by inserting items into the queue using the priority
value provided by the user. A priority of zero is the highest priority. A newly inserted item
must be inserted:

1) ahead of all items with a lower priority
2) behind all items with the same priority

For example:
The Priority Queue on the
right already contains
some data. The following
inserts will add data
at the marked points.

insert Priority 0
insert Priority 2
insert Priority 10

Priority: 1

Priority: 2

Priority: 6

♦ The function pqueueChangePriority accepts an integer (positive or negative) and adds that
integer to the priority of every item in the queue.

♦ There is only one deadline. I expect you to start this project soon. Again, your priority
queue data structure will likely be smaller than your pQueueDriver.

Using Eclipse, Makefiles, and Multiple Projects.

Since your DynamicPriorityQ relies on your DynamicList, which is in another Eclipse project,
your Makefile may contain lines like the following.

bin/pQueue.o: src/pQueue.c include/pQueue.h ../DynamicList/include/list.h
 ${CC} ${CFLAGS} -c src/pQueue.c -o bin/pQueue.o

In this example line, pQueue.o relies on pQueue.h as well as the header file from the list, which
exists up a directory (to your workspace root) and then down in the DynamicList project's include
directory. Your driver will also need to depend on the list.o file in the DynamicList project.

If you want to rebuild list.o via your Priority Queue Makefile you may need a line like this in
your Priority Queue Makefile.1

../DynamicList/bin/list.o: ../DynamicList/include/list.h ../DynamicList/include/list.c
 cd ../DynamicList; make bin/list.o

This moves to the DynamicList directory and invokes make. The Makefile in DynamicList is
read and list.o is rebuilt if necessary. Note that make executes each line of your file with a new
shell so if you cd on one line and run a command on the next line, the command is run as if the
cd had not been run.

You are most likely going to run into Eclipse problems with this project. Namely, Eclipse may
not see an update to the DynamicList data structure while you are coding in the Priority Queue
data structure and may produce errors even if the Makefile succeeds in building your .o and
executable files.

If you right click a project, choose Properties, and select Project References you can mark which
other projects this project relies on. (DynamicPriorityQ relies on StaticList, for example). This
helps Eclipse determine where to look for data type definitions and header files. Eclipse is not
perfect. Sometimes projects get out of sync and you need to: clean and build each project, right
click a project, choose Index, and Rebuild.

Another way to set the references is: Right click on Project > Properties > C/C++ General > Paths &
Symbols > References2

1 http://crawlicious.com/wp/2009/06/11/make-change-dir/

2 http://stackoverflow.com/questions/1270799/eclipse-cdt-make-a-project-rebuild-when-a-library-built-in-another-

project-was-r

