

Hash Tables

Information resource for some of the following
material

http://en.wikipedia.org/wiki/Hash_table

Hash Table

A hash table (or hash map) is a data structure that
maps keys (identifiers) into a certain location
(bucket)

A hash function changes the key into an index
value (or hash value)

Graphical View of Hash Table

Collisions

Ideally, each key maps to an open bucket in the
hash table (perfect hash)

In most cases, a perfect hash is not attainable, so
collisions occur where two different keys map to
the same hash location

We will need to define collision handling
techniques

Hash Functions

Hash function – needs to compute the symbol's
bucket address from the symbol itself

i.e. some function h(K) maps the domain of keys
K into a range of addresses 0, 1, 2, … M-1

The Problem
●Finding a suitable function h
●Determining a suitable M
●Handling collisions

Hash Methods

Many hash methods exist. Let's start with two
easy methods:

Mid Square
1)Square the key value
2)Take a certain number of bits from the middle of
the squared value to form a bucket address

Idea – all characters making up the key are used
in this process so that similar keys will have fewer
collisions

Midsquare Hashing

Problem: Let's assume that the key value is
simply the sum of the ASCII values squared. If the
key value is 16-bits and we take the middle 8-bits:

a) How big is the hash table?
b) What is the range of bucket addresses?
c) Where does the key AB map to in the hash
table?

Division Hashing

Divide the key by some number N where N is a
prime number corresponding to the number of
buckets in the hash table.

a) How big is the hash table?
b) What is the range of bucket addresses?
c) Where does the key AB map to in the hash
table?

Collision Handling

Open Addressing

Suppose we have a key K such that h(K) maps to
the same location as key K' which is distinct from

K.

To resolve this conflict in open addressing, find
another unoccupied space for key K'

Open Addressing
If b0=h(K), the let b0, b1, b2, ..., bM-1 be a probe
sequence where M = tablesize

Hash Table Search by Open Addressing is as
follows:

Let T be some table with M entries which looks
like: T[0],T[1],T[2],...,T[M-1]. We will assume
without loss of generality that all keys inserted
have positive values and empty entries are
signified by a value of 0. We will search for the
key K. The following algorithm will perform this
search

Search Algorithm
i := h(K)
j := i
while((T[i].key <> K) and
 (T[i].key <> 0)) do
 begin
 i := i - p(K)
 if(i < 0) then i := i + M
 if(j = i) then tablefull(i)
 end
return i

The question is: How do we choose p(K)?

Linear Probing
With linear probing we choose p(K) = 1 which
implies the following: h(K), h(K)-1, h(K)-2,...,0,M-
1,M-2,...,h(K).

Problem: Using the hash function h(Kn) = n mod
11 show what the hash table would look like after
inserting the following keys:
M13,G7,Q17,Y25,R18.

Just use the number following the letter as the key
value.

What happens if you add Z26 and then F6?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

