
Queue 

The queue is a FIFO (First-in First-out) 

data structure 

Elements are added at the front of the 

queue and removed from the rear 

The only data element that can be 

removed is the least recently added 

element 



Queue ADT 

Specification 

 

Elements: Queue elements can be of any 
type, but we will assume QueueElement 

 

Structure: Any mechanism for determining 
the elements order of arrival into the 
queue 



Queue ADT Continued 

Domain: The number of queue elements is 

bounded. A queue is considered full if the 

upper-bound is reached. A queue with no 

elements is considered empty. 

 

type Queue; 

 

Operations: There are six operations as follows: 



Queue ADT Continued 

function create (q: Queue, isCreated: boolean) 

results: if q cannot be created, isCreated is 

false; otherwise, isCreated is true,the queue 

is created and is empty 

 

function terminate (q: Queue) 

results: queue q no longer exists 



Queue ADT Continued 

function isFull (q: Queue) 
results: returns true if the queue is full; otherwise 
false is returned 

 

function isEmpty (q: Queue) 
results: returns true if the queue is empty; 
otherwise, false is returned 

 

function enqueue (q: Queue, e: QueueElement) 
requires: isFull (q) is false 
results: element e is added to the front of the 
queue as the most recently added element 



Queue ADT Continued 

function dequeue (q: Queue, e: 

QueueElement) 

requires: isEmpty(q) is not false 

results: The least recently added 

element is removed and assigned to e 

 



Queue Implementation 

Problem: Write queue.h. 

 

Problem: After we agree on queue.h, 
write create, terminate, isFull, isEmpty, 
enqueue, and dequeue. 

 

Problem: Can you think of an application 
that requires a queue? 


