## Formal Complexity Analysis

- Formally, we define Big-O as follows:

Function $f(n)$ is $O(g(n))$ iff there exist positive constants c and n 0 such that $\mathrm{f}(\mathrm{n})<=\mathrm{cg}(\mathrm{n})$ for all n , where $\mathrm{n}>=\mathrm{n} 0$.

## What is happening?

```
for (i = 0; i < howmany; ++i)
    for (j = i + 1; j < howmany; ++j)
    {
        if(nums[i] < nums[j])
        {
            temp = nums[i];
            nums[i] = nums[j];
            nums[j] = temp;
        }
    }
}
```


## What is the Computing Complexity?

In this case, the N we are talking about is the variable howmany. What we need to figure out is how many times the segment below is executed.

$$
\begin{aligned}
& \text { if(nums[i] < nums[j]) } \\
& \left\{\begin{array}{l}
\text { temp = nums[i]; } \\
\text { nums [i] }=\text { nums [j]; } \\
\text { nums [j] }=\text { temp; }
\end{array} .\right.
\end{aligned}
$$

## Number of Iterations

For various values of $i$, let's take a look:
i \# of iterations
0 N-1
1 N-2
2 N-3
and you get the picture

## What is $f(n)$ ?

- This means that if the function $f$ represents the number of executions of the above segment, then $f(N)=(N-1)+$ $(\mathrm{N}-2)+(\mathrm{N}-3)+\ldots+2+1$.
- Those who have taken a statistics class or studied summations can see that this equates to $f(N)=N(N-1) / 2$.
- We can see that this function $f$ can be bounded by some polynomial of $\mathrm{N}_{2}$.


## Not so obvious

- What might not be so obvious is that:
$f(n)<=(1 / 2) n^{2}$, for $n>=1$ and therefore, $\mathrm{n} 0=1, \mathrm{~g}(\mathrm{n})=\mathrm{n}^{2}$, and $\mathrm{c}=1 / 2$.
- This implies that $f(n)$ is $O\left(n^{2}\right)$.


## Graphically

## $f(N)$ is $O(g(N))$



## Other Computing Complexities

Problem: Give an algorithm that works in each of the following times:

1) $O(1)$
2) $O(n)$
3) $O\left(\log _{2} n\right)$
4) $O\left(n^{\wedge} 2\right)$
5) $O\left(n \log _{2} n\right)$
