

Formal Complexity Analysis
● Formally, we define Big-O as follows:

Function f(n) is O(g(n)) iff there exist positive
constants c and n0 such that f(n) <= cg(n) for all
n, where n >= n0.

What is happening?
for (i = 0; i < howmany; ++i)
{
 for (j = i + 1; j < howmany; ++j)
 {
 if(nums[i] < nums[j])
 {
 temp = nums[i];
 nums[i] = nums[j];
 nums[j] = temp;
 }
 }
}

What is the Computing Complexity?

In this case, the N we are talking about is the
variable howmany. What we need to figure out is
how many times the segment below is executed.
 if(nums[i] < nums[j])
 {
 temp = nums[i];
 nums[i] = nums[j];
 nums[j] = temp;
 }

Number of Iterations

For various values of i, let's take a look:
i # of iterations
0 N - 1
1 N - 2
2 N - 3
and you get the picture

What is f(n)?

● This means that if the function f
represents the number of executions of
the above segment, then f(N) = (N-1) +
(N-2) + (N-3) + ... + 2 + 1.

● Those who have taken a statistics class or
studied summations can see that this
equates to f(N) = N(N-1)/2.

● We can see that this function f can be
bounded by some polynomial of N2.

Not so obvious

● What might not be so obvious is that:
 f(n) <= (1/2)n2, for n >= 1 and
therefore, n0 = 1, g(n) = n2, and c = 1/2.

● This implies that f(n) is O(n2).

Graphically

f(N) is O(g(N))

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

N

Y

f(N)=N(N-1)/2
g(N)=(1/2)N 2̂

Other Computing Complexities

Problem: Give an algorithm that works in
each of the following times:
1) O(1)
2) O(n)
3) O(log2 n)
4) O(n^2)
5) O(n log2 n)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

