
  

Formal Complexity Analysis
● Formally, we define Big-O as follows:

Function f(n) is O(g(n)) iff there exist positive 
constants c and n0 such that f(n) <= cg(n) for all 
n, where n >= n0.



  

What is happening?
for (i = 0; i < howmany; ++i)
{
  for (j = i + 1; j < howmany; ++j)
  {
    if(nums[i] < nums[j])
    {
      temp = nums[i];
      nums[i] = nums[j];
      nums[j] = temp;
    }
  }
}



  

What is the Computing Complexity?

In this case, the N we are talking about is the 
variable howmany. What we need to figure out is 
how many times the segment below is executed. 
    if(nums[i] < nums[j])
    {
      temp = nums[i];
      nums[i] = nums[j];
      nums[j] = temp;
    }



  

Number of Iterations

For various values of i, let's take a look: 
i     # of iterations
0     N - 1
1     N - 2
2     N - 3
and you get the picture



  

What is f(n)?

● This means that if the function f 
represents the number of executions of 
the above segment, then f(N) = (N-1) + 
(N-2) + (N-3) + ... + 2 + 1. 

● Those who have taken a statistics class or 
studied summations can see that this 
equates to f(N) = N(N-1)/2. 

● We can see that this function f can be 
bounded by some polynomial of N2. 



  

Not so obvious

● What might not be so obvious is that:
 f(n) <= (1/2)n2, for n >= 1 and 
therefore, n0 = 1, g(n) = n2, and c = 1/2. 

● This implies that f(n) is O(n2). 



  

Graphically
 

f(N) is O(g(N))
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Other Computing Complexities

Problem: Give an algorithm that works in 
each of the following times: 
1) O(1)
2) O(n)
3) O(log2 n)
4) O(n^2)
5) O(n log2 n) 
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