

Queue

The queue is a FIFO (First-in First-out)
data structure

Elements are added at the front of the
queue and removed from the rear

The only data element that can be
removed is the least recently added
element

Queue ADT

Specification

Elements: Queue elements can be of any
type, but we will assume QueueElement

Structure: Any mechanism for determining
the elements order of arrival into the
queue

Queue ADT Continued

Domain: The number of queue elements is
bounded. A queue is considered full if the
upper-bound is reached. A queue with no
elements is considered empty.

type Queue;

Operations: There are six operations as follows:

Queue ADT Continued

function create (q: Queue, isCreated: boolean)
results: if q cannot be created, isCreated is
false; otherwise, isCreated is true,the queue
is created and is empty

function terminate (q: Queue)
results: queue q no longer exists

Queue ADT Continued
function isFull (q: Queue)
results: returns true if the queue is full; otherwise
false is returned

function isEmpty (q: Queue)
results: returns true if the queue is empty;
otherwise, false is returned

function enqueue (q: Queue, e: QueueElement)
requires: isFull (q) is false
results: element e is added to the front of the
queue as the most recently added element

Queue ADT Continued

function dequeue (q: Queue, e:
QueueElement)
requires: isEmpty(q) is not false
results: The least recently added
element is removed and assigned to e

Queue Implementation

Problem: Write queue.h.

Problem: After we agree on queue.h,
write create, terminate, isFull, isEmpty,
enqueue, and dequeue.

Problem: Can you think of an application
that requires a queue?

	Queue
	Queue ADT
	Queue ADT Continued
	Slide 4
	Slide 5
	Slide 6
	Queue Implementation

