Formal Complexity Analysis

- Formally, we define Big-O as follows:

Function $f(n)$ is $O(g(n))$ iff there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ for all n, where $n \geq n_0$.
What is happening?

for (i = 0; i < howmany; ++i)
{
 for (j = i + 1; j < howmany; ++j)
 {
 if(nums[i] < nums[j])
 {
 temp = nums[i];
 nums[i] = nums[j];
 nums[j] = temp;
 }
 }
}
What is the Computing Complexity?

In this case, the N we are talking about is the variable howmany. What we need to figure out is how many times the segment below is executed.

```cpp
if(nums[i] < nums[j])
{
    temp = nums[i];
    nums[i] = nums[j];
    nums[j] = temp;
}
```
Number of Iterations

For various values of i, let's take a look:

\[
\begin{array}{ll}
 i & \text{# of iterations} \\
 0 & N - 1 \\
 1 & N - 2 \\
 2 & N - 3 \\
\end{array}
\]

and you get the picture
What is \(f(n) \)?

- This means that if the function \(f \) represents the number of executions of the above segment, then \(f(N) = (N-1) + (N-2) + (N-3) + \ldots + 2 + 1 \).

- Those who have taken a statistics class or studied summations can see that this equates to \(f(N) = N(N-1)/2 \).

- We can see that this function \(f \) can be bounded by some polynomial of \(N^2 \).
Not so obvious

- What might not be so obvious is that:
 \[f(n) \leq (1/2)n^2, \text{ for } n \geq 1 \text{ and therefore, } n_0 = 1, \ g(n) = n^2, \text{ and } c = 1/2. \]
- This implies that \(f(n) \) is \(O(n^2) \).
Graphically

f(N) is O(g(N))

\[f(N) = \frac{N(N-1)}{2} \]

\[g(N) = \frac{1}{2}N^2 \]
Other Computing Complexities

Problem: Give an algorithm that works in each of the following times:

1) $O(1)$
2) $O(n)$
3) $O(\log_2 n)$
4) $O(n^2)$
5) $O(n \log_2 n)$