

Some Basic Concepts
Software Life Cycle

Requirements – specifications for a given project that includes what is to be input and
what is to be output.

Analysis – the problem is broken down into manageable pieces typically using a top-
down approach where the program is continually refined into more manageable
pieces. During this phase there are several alternative solutions that are developed
and compared. We will talk how to compare these pieces shortly.

Design – this continues the work of the analysis phase and includes data objects the
program needs and the operations performed on the data objects. The data types
during this phase are ADTs and no implementation details exist during this phase.

Refinement and coding – actual representations for each ADT are developed and
algorithms for each operation are written.

Verification - program correctness must be developed including extensive testing using
various datasets.

Once You're Done

1.Are the original specifications met by the program?
2.Is the program implemented correctly and work

correctly?
3.Is there documentation that shows how to use the

program?
4.Does the program contain well defined modules and

strive for reusability?
5.How readable is the code?
6.How efficiently and effectively is storage used?
7.Does the program have an acceptable running time?

Complexity

Questions 6. and 7. are best identified by the terms
“Space Complexity” and “Time Complexity.”

For each of the data structures we will discuss in this
course, we will want to know the associated space
complexity and time complexity.

We need some method to talk about complexity issues

Big-O
● Algorithms are measured according to a notation

called "Big-O" notation (e.g. O(N)).
● Big-O measures the computational complexity of a

particular algorithm based on the number of iterations,
compares, assignment statements, and so on relative
to some number N (the number of data items in the
data structure).

What is N? Why?
#define TRUE 1
#define FALSE 0
int isSorted (const int nums[], int howmany)
{
 int bSorted;
 int i;
 bSorted = TRUE;
 for (i = 0; i < (howmany - 1); ++i)
 {
 if (nums[i] > nums[i + 1])
 {
 bSorted = FALSE;
 }
 }
 return bSorted;
}

What is the Complexity?

If isSorted is called only one time:
1)How many times is the statement bSorted = true;

executed?
2)How many times is the for statement executed?
3)How many times is the if statement executed?
4)How many times is the statement return bSorted;

executed?
5)What am I missing?
6)What is the overall time complexity of function

isSorted? O(__)

Complexity Scenerios

When looking at computational complexity, we
typically examine three scenerios:
1)Best Case Performance
2)Average Case Performance
3)Worst Case Performance

Complexity Categories
Typically we find that computational complexities fall into polynomial,
logarithmic, or exponential time and are named:

1) O(1) – constant

2) O(log2N) – logarithmic

3) O(N) – linear

4) O(Nlog2N) – Log linear

5) O(N2) – quadratic

6) O(N3) – cubic

7) O(2N) – exponential

8) O(N!) - factorial

Growth Rates

Let's examine how the complexity grows for
various computing times.

N log2N Nlog2N N2 N3 2n

2 1 2 4 8 4
4 2 8 16 64 16
8 3 24 64 512 256
16 4 64 256 4096 65536

Growth Rates Graphically

Identify Big-O

What is the worst case Big-O for:
Function String Representation #1 String Representation #2

strLength

strEqual

strConcat

strAppend

strReverse

strClear

strCopy

Identify Big-O

What is the best case Big-O for:
Function String Representation #1 String Representation #2

strLength

strEqual

strConcat

strAppend

strReverse

strClear

strCopy

Identify Big-O

What is the average case Big-O for:
Function String Representation #1 String Representation #2

strLength

strEqual

strConcat

strAppend

strReverse

strClear

strCopy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

