
Synchronization
&

Game Loop Design

Code Examination – Thread run()
 public void run()
 {
 Canvas canvas = null;
 while (mbIsRunning)
 {
 canvas = mSurfaceHolder.lockCanvas();
 if (canvas != null)
 {
 mGraphicsSurfaceView.onDraw(canvas);
 mSurfaceHolder.unlockCanvasAndPost(canvas);
 }
 }
 }

Back to SurfaceView

• Provides a dedicated surface for a secondary
thread to render screen content

• All SurfaceView and SurfaceHolder.Callback
methods are called from the thread running
the SurfaceView's window (typically the main
application thread)

What potential thread problems can exist?

Synchronization

• Every Java object (including every class
loaded) has an associated lock

• synchronized block
– compiler adds instructions to acquire lock before

executing code
– compiler adds instructions to release lock after

executing code
• thread owns the lock

More Synchronization
If thread A and thread B both have access to a Counter

object and thread A owns the lock, thread B must wait
for thread A to release the lock. Thus, simultaneous
calls to increment and decrement behave correctly.

 public class Counter { private int count = 0; public void increment () {synchronized (this){++count;}}
 public void decrement () {synchronized (this) {--count;}}
 }

Questions to think about

1. What is the purpose of c =
_surfaceHolder.lockCanvas(null);

2. What is the purpose of
synchronized?

3. Where do we have to use
synchronized?

4. What threads exist and what are
they doing?

Game Loop Design

• Games consist of:
– getting user input
– updating the game state (physics)
– game AI
– music/sound effects
– game display

while (bIsRunning) // main game loop
{
 updateGame ();
 drawGame ();
}

Vector versus ArrayList

• Vector
– Synchronized
– Thread safe

• ArrayList
– Unsynchronized
– Not thread safe

• Synchronization incurs a performance hit so
chose wisely

Vector versus ArrayList

• Both Vector and ArrayList use an array for
their contents

• A Vector defaults to doubling in size if the
array is full

• An ArrayList defaults to increasing by 50% if
the array is full

Code Examination – SurfaceView
onTouch ()

public boolean onTouchEvent (MotionEvent event)
{
 return super.onTouchEvent ();
}

Problem #1: Add the method onTouchEvent to the
SurfaceView such that when the BallAnimation
application is run, the screen is black. When the user
clicks anywhere on the screen, a blue ball will be
centered at the tip of the cursor on the screen.

Synchronization

• Problem #2 – Allow the user the ability to
place an unknown number of blue balls on the
screen without any animation and without
any synchronization.

• Method1: Use an ArrayList. Can you crash
your program?

• Method2: Use a Vector. Can you crash your
program?

Synchronization

• Problem #3 – Allow the user the ability to
place an unknown number of blue balls on the
screen with animation where the balls bounce
off of the sides of the display.

• Use an ArrayList with the proper
synchronization

• Create a method animate in
GraphicsSurfaceView called from the
GraphicsSurfaceViewThread class

	Synchronization & Game Loop Design
	Code Examination – Thread run()
	Back to SurfaceView
	Synchronization
	More Synchronization
	Slide 6
	Game Loop Design
	Slide 8
	Slide 9
	Code Examination – SurfaceView onTouch ()
	Terminology
	Slide 12

