
Chapter 15
More Inheritance

 Reading: pp. 929-945

 Good Problems to Work: pp. 917-918: 15.7, 15.8

 More Inheritance

 Polymorphism

 Virtual Functions

CS250 - Intro to CS II 1Spring 2017



Destructors

 The opposite of constructors

 Have the same name as the class, with a ~ in front 
of it

 Called whenever an object is destroyed

 A destructor has no arguments and or return value

 Only one destructor allowed!

 No need for us to explicitly declare a destructor 
unless there are pointer variables in the class

CS250 - Intro to CS II 2Spring 2017



Constructor/Destructor Example

class Test
{
public:

Test (int i);
~Test ();

private:
int mId;

};

Test::Test (int i)
{
mId = i;
std::cout << “C: " << mId << std::endl;

}

Test::~Test ()
{
std::cout << “D: " << mId << std::endl;

}

CS250 - Intro to CS II 3Spring 2017



What is the output?

void funct ();

int main ()

{

Test cTest1 (1);

funct ();

Test cTest3 (3);

return EXIT_SUCCESS;

}

void funct ()

{

Test cTest2 (2);

}

CS250 - Intro to CS II 4Spring 2017



Polymorphism

 Code is said to be polymorphic if 

executing the code with different types of 

data (objects) produces different behavior

 Program in the general, rather than 

program in the specific

 Virtual functions make polymorphism 

possible

CS250 - Intro to CS II 5Spring 2017



Consider

#include <iostream>

class Def1
{
public:

Def1() {std::cout << "Def1" << std::endl;}
~Def1 () {std::cout << "~Def1" << std::endl;}
void Foo () {std::cout << "Def1->Foo" << std::endl;}

};
class Def2 : public Def1
{
public:

Def2 () {std::cout << "Def2" << std::endl;}
~Def2 () {std::cout << "~Def2" << std::endl;}
void Foo () {std::cout << "Def2->Foo" << std::endl;}

};

CS250 - Intro to CS II 6Spring 2017



What is the output? Why?

int main ()

{

Def1 *pcDef1 = new Def1;

Def2 *pcDef2 = new Def2;

pcDef1->Foo();

pcDef2->Foo();

delete pcDef1;

delete pcDef2;

}

CS250 - Intro to CS II 7Spring 2017



What is the output? Why?

int main ()

{

Def1 *pcDef1 = new Def1;

Def1 *pcDef2 = new Def2; // type Def2 to Def1

pcDef1->Foo();

pcDef2->Foo();

delete pcDef1;

delete pcDef2;

}

CS250 - Intro to CS II 8Spring 2017



Virtual Functions

 You can tell the compiler to select the 

more specialized version of a member 

function by declaring the member function 

to be a virtual function

 Declare a virtual function by prefixing its 

declaration with the word virtual

CS250 - Intro to CS II 9Spring 2017



What is the output? Why?

If the following 2 changes are made to the previous program, 
what is the output? Why?

virtual void Foo () {std::cout << "Def1->Foo" << std::endl;}

virtual void Foo () {std::cout << "Def2->Foo" << std::endl;}

int main ()
{

Def1 *pcDef1 = new Def1;
Def1 *pcDef2 = new Def2;
pcDef1->Foo();
pcDef2->Foo();
delete pcDef1;
delete pcDef2;

}

CS250 - Intro to CS II 10Spring 2017



Virtual Destructor

 Any potential base class should have a virtual 

destructor

 Why? The compiler performs static binding on 

any destructor not declared virtual

If the following changes are made to the original 

program, what is the output? Why?

CS250 - Intro to CS II 11Spring 2017



Virtual Destructor

virtual ~Def1 () {std::cout << "~Def1" << std::endl;}

virtual void Foo () {std::cout << "Def1->Foo" << std::endl;}

virtual void Foo () {std::cout << "Def2->Foo" << std::endl;}

int main ()
{
Def1 *pcDef1 = new Def1;
Def1 *pcDef2 = new Def2;
pcDef1->Foo();
pcDef2->Foo();
delete pcDef1;
delete pcDef2;

}

CS250 - Intro to CS II 12Spring 2017


