
CS250 Intro to CS II

Spring 2017

Spring 2017 CS250 - Intro to CS II 1

Chapter 9 - Arrays, Pointers, Dynamic
Memory

 Reading: pp. 495-526

 Good Problems to Work: p.510 9.1, 9.3, 9.4, 9.5,
9.6, 9.7

Spring 2017 CS250 - Intro to CS II 2

Pointers

 Pointers are one of the most powerful features

of C++

 Pointers give programmers more control over

the computer’s memory

 A pointer is the memory address of a variable

 A pointer is one of the most important concepts

in C/C++

Spring 2017 CS250 - Intro to CS II 3

Pointer Declarations

 Pointers are declared using the * operator

 The following declares a pointer to an
integer

o int *pLength;

 length is an integer and pLength is a
pointer to an integer

o int *pLength, length;

Spring 2017 CS250 - Intro to CS II 4

Pointer Problem

#include <iostream>

int main ()

{

char *pCh, ch;

std::cout << "Size of pCh is "
<< sizeof (pCh) << std::endl;

std::cout << "Size of ch is "
<< sizeof (ch) << std::endl;

return EXIT_SUCCESS;

}

What is the difference between pCh and ch?

What is the output from the above program?

Spring 2017 CS250 - Intro to CS II 5

Address Operator

 How do we assign the address of a

variable to a pointer?

 Use the address operator (&)

 & returns the operand’s memory address

 Example:

o pLength = &length;

Spring 2017 CS250 - Intro to CS II 6

Address Operator

 Address operator cannot be applied to
constants

o int *pX, x = 5;

o const int NUM = 98;

o pX = &x // NO ERROR

o pX = &NUM; // ERROR

o pX = &8; // ERROR

Spring 2017 CS250 - Intro to CS II 7

Pointer Operations

int x, *pX;

x = 8; // set x to a value of 8

pX = &x; // set the pointer variable to point

// to the address of x

std::cout << "x is: " << x << std::endl;

std::cout << "Size of x is: " << sizeof(x) <<
std::endl;

std::cout << "Address of x is: " << pX << std::endl;

std::cout << "Address of x is: " << &x << std::endl;

Spring 2017 CS250 - Intro to CS II 8

Indirection Operator

 How can we use the pointer variable to modify the value in the
variable?

o i.e. how to use pX to change the value of x

 Answer: use the indirection operator (*)

 The * operator dereferences the pointer

o You are actually working with whatever the pointer is pointing to

 Using the example on the previous slide

o std::cout << "Value pX is pointing to is: " << *pX

<< std::endl;

Spring 2017 CS250 - Intro to CS II 9

Indirection Operator

 Change the value of x from 8 to 10 using

the pointer variable?

 Change the value of x to a value entered

by the user using the indirection operator?

Spring 2017 CS250 - Intro to CS II 10

Question

Exactly what happens when the following program
is compiled and executed?

#include <iostream>

int main ()

{

int x, *pX;

x = 8;

*pX = 2;

std::cout << "x = " << x << « \n*pX = " << *pX << std::endl;

return EXIT_SUCCESS;

}

Spring 2017 CS250 - Intro to CS II 11

this Pointer

 this - is a special built-in pointer

available to a class’s member functions.

this points to the instance of the class

making the function call

 this is passed as a hidden argument to

all nonstatic member functions

Spring 2017 CS250 - Intro to CS II 12

RationalSet

 What do we return?

RationalSet RationalSet::add (const Rational &rcRational)
{

if (!isInSet (rcRational))
{
macRationals[mNumRationals] = rcRational;
++mNumRationals;

}
return

}

Spring 2017 CS250 - Intro to CS II 13

Accessing data members

Accessing data members using pointers

 (*this).mNumerator can be replaced

with this->mNumerator

Spring 2017 CS250 - Intro to CS II 14

Arrays and Pointers

 Array names can be used as constant pointers

 Pointers can be used as array names BUT we will
be careful to use array notation for arrays and
pointer notation for pointers

short aNumbers[] = {5, 10, 15, 20, 25};

std::cout << "numbers[0] = " << *aNumbers << std::endl;

std::cout << "numbers[1] = " << *(aNumbers + 1)
<< std::endl;

std::cout << "numbers[2] = " << aNumbers[2]
<< std::endl;

Spring 2017 CS250 - Intro to CS II 15

Problem

 Consider the following C++ segment

const int SIZE = 8;

int aNumbers[] = {5, 10, 15, 20, 25, 30, 35, 40};

int *pNumbers, sum = 0;

 Write the C++ code using only pointer
notation that will print the sum of the values
found in the array numbers

Spring 2017 CS250 - Intro to CS II 16

Pointer Arithmetic

 Some mathematical operations can be performed on
pointers

a) ++ and -- can be used with pointer variables

b) an integer may be added or subtracted from a
pointer variable

c) a pointer may be added or subtracted from
another pointer

If the integer pointer variable pInt is at location 1000, what is
the value of pInt after pInt++; is executed?

Spring 2017 CS250 - Intro to CS II 17

Pointers and Functions

 What are the two ways of passing arguments into
functions?

 Write two functions square1 and square2 that
will calculate and return the square of an integer.

o square1 should accept the argument passed by
value,

o square2 should accept the argument passed by
reference.

Spring 2017 CS250 - Intro to CS II 18

Pointers as Function Arguments

 A pointer can be a formal function parameter

 Much like a reference variable, the formal

function parameter has access to the actual

argument

 The address of the actual argument is

passed to the formal argument

Spring 2017 CS250 - Intro to CS II 19

Pointers as Function Arguments

void square3 (int *pNum)

{

*pNum *= *pNum;

}

 What would a function call to the above function
look like?

Spring 2017 CS250 - Intro to CS II 20

Pointers to Constants

 A pointer to a constant means that the compiler

will not allow us to change the data that the pointer

points to.

void printArray (const int *pNumbers)

{

}

Spring 2017 CS250 - Intro to CS II 21

Constant Pointers

 A constant pointer means that the compiler will not

allow us to change the actual pointer value BUT

we can change the data that the pointer points to.

void printArray (int * const pNumbers)

{

}

Spring 2017 CS250 - Intro to CS II 22

Constant Pointers to Constants

 A constant pointer to a constant means the
compiler will not allow us to change the actual
pointer value OR the data that the pointer points
to.

void printArray (const int * const pNumbers)

{

}

Spring 2017 CS250 - Intro to CS II 23

Problem

Using pointer notation, write a C++ function
printCharacters that will accept a character array
and the size of the array. The function will print
each element of the array on a separate line.

Spring 2017 CS250 - Intro to CS II 24

Dynamic Memory Allocation

 Variables can be created and destroyed

while a program is running

 new is used to dynamically allocate space

from the heap. A pointer to the allocated

space is returned

 delete is used to free dynamically

allocated space

Spring 2017 CS250 - Intro to CS II 25

Using new and delete

int *pInt;

pInt = new int;

*pInt = 5;

std::cout << *pInt << std::endl;

delete pInt;

Spring 2017 CS250 - Intro to CS II 26

Pointers to Arrays

 We can dynamically create space for an

array

int *pAges, sum = 0;

pAges = new int[100];

for (int i = 0; i < 100; ++i)

{

*(pAges + i) = i; // or pAges[i] = i;

}

delete [] pAges;

Spring 2017 CS250 - Intro to CS II 27

NULL Pointer

 A null pointer contains the address 0

 The address 0 is an unusable address

pAges = new int[100];
if (NULL == pAges)
{

std::cout << “Memory Allocation Error\n”;
exit (EXIT_FAILURE);

}

 Only use delete with pointers that were used with
new

Spring 2017 CS250 - Intro to CS II 28

C++11: nullptr

 C++11: new revision of C++

int *pAges = nullptr;

pAges = new int[100];

if (nullptr == pAges)

{

std::cout << “Memory Allocation Error\n”;

exit (EXIT_FAILURE);

}

Spring 2017 CS250 - Intro to CS II 29

