
CS250 Final
Yet More Review Questions

Spring 2013

Pointers

• Write a function isStrEqual that accepts two
null terminated strings (type char *) and
returns true if the two strings are identical;
otherwise, false is returned. Use pointer
notation.

1. What does a call to your function look like?

2. Write the function.

Pointers

• What is the difference between the two
prototypes below?

void processArray (const char *pText);

void processArray (char * const pText);

• Which should be used for the previous
function? Why?

Pointers

• What is this?

• Where does this come from?

• What is *this?

Word Interface

• Consider the interface for Word where mData is NOT null-terminated. The number of actual
characters contained in mData is held in the variable mLength.

class Word
{
 public:
 static const int MAX_SIZE = 256;
 Word (); // Set Word to size zero
 Word (const char *); // The char * passed to Word IS null terminated
 Word (const Word &);
 friend ostream &operator<< (ostream &, const Word &);

 private:
 char mData[MAX_SIZE];
 int mLength;
};

• Implement everything in public

Questions

• Will the following program compile? If so,
what is the output? If not, why not?

Questions

1. There is a difference in how C++ assigns a
value for cWord3 and cWord4 below. Explain
the difference in detail.

2. Is Word overloaded, overridden, or
redefined. Explain.

Composition

1. Create a Dictionary class that is able to hold
up to 1024 Words.

2. Implement a method add that accepts a
Word and adds the word to the dictionary if
the word isn’t already in the dictionary.

Point

• Consider the class Point

class Point
{
 public:
 Point (double = 0.0, double = 0.0);
 void setX (double);
 double getX () const;
 void setY (double);
 double getY () const;
 friend ostream &operator<< (ostream &, const Point &);

 private:
 double mX, mY;
};

Polygon

• A Polygon is an abstract class capable of
holding up to 1024 points. Write the interface
for Polygon that has appropriate
constructor(s), an add method, an overloaded
insertion operator, virtual functions draw and
perimeter, and a pure virtual function area.

Triangle

• Triangle is a concrete class that inherits from
Polygon and is to have all of the functionality
of a Polygon as well an implementation for
area. Also, a Triangle is to have a method
isRight. Write the interface for Triangle.

• Important: Once a triangle is created, one
shouldn’t be able to change the triangle into
something else (say a Rectangle).

Rectangle

• Rectangle is a concrete class that inherits from
Polygon and is to have all of the functionality
of a Polygon as well an implementation for
area. Write the interface for Rectangle.

• Important: Once a rectangle is created, one
shouldn’t be able to change the rectangle into
something else.

main

• Create an array of up to 25 Polygon pointers
that can point to a Triangle or a Rectangle.

• Assuming that the array of polygon pointers is
pointing to numPolygon objects, output the
area for each object.

