
CS250 Intro to CS II

Spring 2014

Spring 2014 CS250 - Intro to CS II 1

Chapter 9 - Pointers
Reading: pp. 491-500

 Pointers are one of the most powerful

features of C++

 Pointers give programmers more control over

the computer’s memory

 A pointer is the memory address of a variable

 A pointer is one of the most difficult and

important concepts in C/C++

Spring 2014 CS250 - Intro to CS II 2

Pointer Declarations

 The memory address of a variable can be
stored in another variable called a pointer

 Pointers are declared using the * operator

 The following declares a pointer to an integer
o int *pLength;

 In the following statement, length is an
integer and pLength is a pointer to an
integer
o int *pLength, length;

Spring 2014 CS250 - Intro to CS II 3

Pointer Problem

#include <iostream>

using namespace std;

int main ()

{

 char *pCh, ch;

 cout << "Size of pCh is " << sizeof (pCh) << endl;

 cout << "Size of ch is " << sizeof (ch) << endl;

 return EXIT_SUCCESS;

}

What is the difference between pCh and ch?

What is the output from the above program?

Spring 2014 CS250 - Intro to CS II 4

Address Operator

 How do we assign the address of a

variable to a pointer?

 Use the address operator (&)

 & returns the operand’s memory address

 Example:

o pLength = &length;

Spring 2014 CS250 - Intro to CS II 5

Address Operator

 Address operator cannot be applied to
constants

o int *pX, x = 5;

o const int NUM = 98;

o pX = &x // NO ERROR

o pX = &NUM; // ERROR

o pX = &8; // ERROR

Spring 2014 CS250 - Intro to CS II 6

Pointer Operations

int x, *pX;

x = 8; // set x to a value of 8

pX = &x; // set the pointer variable to point

 // to the address of x

cout << "x is: " << x << endl;

cout << "Size of x is: " << sizeof(x) << endl;

cout << "Address of x is: " << pX << endl;

cout << "Address of x is: " << &x << endl;

Spring 2014 CS250 - Intro to CS II 7

Indirection Operator

 How can we use the pointer variable to modify the value in the
variable?

o i.e. how to use pX to change the value of x

 Answer: use the indirection operator (*)

 The * operator dereferences the pointer

o You are actually working with whatever the pointer is pointing to

 Using the example on the previous slide

o cout << "Value pX is pointing to is: " << *pX <<

endl;

Spring 2014 CS250 - Intro to CS II 8

Indirection Operator

 Change the value of x from 8 to 10 using

the pointer variable?

 Change the value of x to a value entered

by the user using the indirection operator?

Spring 2014 CS250 - Intro to CS II 9

Question

Exactly what happens when the following program is
compiled and executed?

#include <iostream>

using namespace std;

int main ()

{

 int x, *pX;

 x = 8;

 *pX = 2;

 cout << "x = " << x << "*pX = " << *pX << endl;

 return EXIT_SUCCESS;

}

 Spring 2014 CS250 - Intro to CS II 10

this Pointer

 functions - only one copy of each function exists in memory
independent of the number of objects instantiated using the
class declaration

 data members - each unique object of a particular class has
space allocated for the data members of the class

 this - is a special built-in pointer available to a class’s
member functions. this points to the instance of the class
making the function call

 this is passed as a hidden argument to all nonstatic
member functions

Spring 2014 CS250 - Intro to CS II 11

RationalSet

 What do we return?

RationalSet RationalSet::add (const Rational &cRational)
{
 if (!isInSet (cRational))
 {
 mcRationals[mNumRationals] = cRational;
 ++mNumRationals;
 }
 return
}

Spring 2014 CS250 - Intro to CS II 12

Rational Interface

#ifndef RATIONAL_H
#define RATIONAL_H

using namespace std;

class Rational
{
 public:
 Rational (int = 0, int = 1);
 void print (ostream &cOutput);

 private:
 int mNumerator;
 int mDenominator;
};

#endif

Spring 2014 CS250 - Intro to CS II 13

Rational Implementation

#include "Rational.h"

Rational::Rational (int numerator, int denominator)
{
 (*this).mNumerator = numerator;
 (*this).mDenominator = denominator;
}

void Rational::print(ostream &cOutput)
{
 cOutput << mNumerator << '/' << mDenominator;
}

Spring 2014 CS250 - Intro to CS II 14

Accessing data members

Accessing data members using pointers

 (*this).mNumerator can be replaced

with this->mNumerator

Spring 2014 CS250 - Intro to CS II 15

