
CS250 Assignment 5
Color Matching Game

Date assigned: Monday, March 17, 2014

Date due: Monday, April 9, 2014
Points: 40

For this assignment you will be using DarkGDK, the Circle Animation project, and
the Game2DUtilities that you created for your last assignment to implement a color

matching game.

When the game first starts, the user is presented with a number of white circles

filling the screen. The user then uses the mouse to uncover the circles two at a
time. If the two circles match in color, then they remain uncovered. However, if the

circles do not match, then they both are changed back to white. You can see screen
shots of the game in progress below.

To allow for players of multiple abilities, you need to make it easy to change the
number of colors that they are playing with. In your main game driver, create a

constant called NUM_COLORS. For example, if this constant is set to 6, then you
will display the screen below. If the constant is set to 4, then you will show the

circles in a 2 rows and 4 columns formation. Further, the circles must completely
cover the screen. So, the circles in games that have more colors (hence more
circles) will have a smaller radius than the circles in games that have fewer colors.

Below is an example of a game with 10 colors (20 circles)

In order to implement the game, you must do the following:

1) Add a Color class to Game2DUtilities: Create two new files in your
Game2DUtilities called Color.h and Color.cpp. This class will contain

information about the colors that will be used in the game, and functionality to
return the RGB of the colors. In the CS 250 public folder you will find the
content for those files. Copy the content of the files on Turing to the files in your

project and make sure that your Game2DUtilities builds without errors.

2) Add a ColorSet class to Game2DUtilities: Create two new files in your
Game2DUtilities called ColorSet.h and ColorSet.cpp. This class will be used to
maintain the colors that are used in the game. The interface for the ColorSet

class is provided for you on Turing. You are to implement ColorSet.cpp. Make
sure that Game2Utilities builds without errors.

3) Modify the Circle class in CircleAnimation: Add a Color data member named

mColor, which is an object of class Color, to the Circle class. Add functions

setColor and getColor to provide functionality for mColor. Add a function
drawFilled that will draw a filled circle. The filled circle is accomplished by

drawing a circle with radius 1, then again with radius 2, then 3, and so on until
it is the size of mRadius (the data member in Circle). Make sure that
CircleAnimation builds without errors. Be sure to test the new functions that you

added. Try to display multiple circles to the screen that are different colors.

4) Create the ColorMatchingGame project: Add a new project to your solution and
call it ColorMatchingGame. This project must be of type C++ Project (not a
console project). Minimally, this project is to contain a class called

ColorMatchingGame (ColorMatchingGame.h and
ColorMatchingGame.cpp) and a driver called

ColorMatchingGameDriver.cpp. Link this project to DarkGDK,
Game2DUtilities, and CircleAnimation. Make sure that the ColorMatchingGame
project builds without errors.

Steps 1-4 are setting up all of the basic functionality that you need to create the

game. The next step is to start developing the game itself. All of the code that is
particular to the game will be in the project ColorMatchingGame. You should not

need to add any more code to Game2DUilities and CircleAnimation. Also, the
ColorMatchingGameDriver should only need to initialize the ColorMatchingGame
class, then call a draw and update function similar to what you did in the previous

assignment.

Here are the steps that I would advise you to take next:

5) Display the circles to the screen. Don’t worry about giving them any color at the

moment, just set them to white. You will need to determine the x, y, and radius
of each circle based on the number of colors being used. Here are some built-in

DarkGDK functions that will help you: dbScreenWidth(), dbScreenHeight().

6) Randomly assign colors to the circles making sure that each color appears on

two circles exactly. A function that you would find useful here is dbRND().

7) Now its time to handle the gameplay. Use dbMouseClick() to catch a mouse
click, and dbMouseX() and dbMouseY() to determine the (x,y) location that was
clicked. dbWaitMouse() can be used to wait until the mouse is clicked.

8) Optional: Indicate when the user has completed the game. You could play a

sound, make the circles flash, or show the user a message!

To complete this assignment you must

1. Create a project called ColorMatchingGame with the proper interfaces and
implementations for playing the game.

2. Type the solution (fully documented/commented) to the problem into
your projects. The hard copy must be placed on the instructor’s desk by the time

class starts on the day that it is due. The hard copy must be printed in color,
double-sided, and stapled in the upper left corner.

3. Remember to enter in your name as the author of the program. Also, each file is
the have file header documentation.

4. Make sure that your program compiles and runs correctly. If you get any

errors, double check that you typed everything correctly. Be aware that C++ is
case-sensitive. Also, there must not be any warnings when compiling your
program (other than those produced by Dark GDK) or you will lose points.

5. Once you are sure that the program works correctly, it is time to submit

your solution. You do this by logging on to Turing and placing your complete
solution folder with all projects working correctly in the proper CS250 Drop folder.
Make sure that you copy your program folder and don't move the folder. If you

move the folder, then you will not have your own copy!

6. Play the game until about half of the circles are correctly matched. Then use a
snipping tool to copy the screen, then print it out in color and staple it to the end of

your print out.

We have given you enough time to finish the assignment without having to work

over spring break. We would advise that you complete steps 1-5 by Friday. If you
wait until after spring break to start your assignment, then you will most likely not

complete it in time. Good Luck and Have Fun!!!

