
Topics

 Polymorphism

 Virtual Functions

Spring 2013 CS250 - Intro to CS II 1

Polymorphism

 Code is said to be polymorphic if

executing the code with different types of

data produces different behavior

 Program in the general, rather than

program in the specific

 Virtual functions make polymorphism

possible

Spring 2013 CS250 - Intro to CS II 2

Consider

#include <iostream>
using namespace std;
class Def1
{
 public:
 Def1() {cout << "Def1" << endl;}
 ~Def1 () {cout << "~Def1" << endl;}
 void Foo () {cout << "Def1 Foo" << endl;}
};
class Def2 : public Def1
{
 public:
 Def2 () {cout << "Def2" << endl;}
 ~Def2 () {cout << "~Def2" << endl;}
 void Foo () {cout << "Def2 Foo" << endl;}
};

Spring 2013 CS250 - Intro to CS II 3

What is the output? Why?

int main ()

{

 Def1 *pcDef1 = new Def1;

 Def2 *pcDef2 = new Def2;

 pcDef1->Foo();

 pcDef2->Foo();

 delete pcDef1;

 delete pcDef2;

}

Spring 2013 CS250 - Intro to CS II 4

What is the output? Why?

int main ()

{

 Def1 *pcDef1 = new Def1;

 Def1 *pcDef2 = new Def2; // Def2 to Def1

 pcDef1->Foo();

 pcDef2->Foo();

 delete pcDef1;

 delete pcDef2;

}

Spring 2013 CS250 - Intro to CS II 5

Virtual Functions

 You can tell the compiler to select the

more specialized version of a member

function by declaring the member function

to be a virtual function

 Declare a virtual function by prefixing its

declaration with the word virtual

Spring 2013 CS250 - Intro to CS II 6

What is the output? Why?

If the following 2 changes are made to the previous program,
what is the output? Why?

virtual void Foo () {cout << "Def1 Foo" << endl;}

virtual void Foo () {cout << "Def2 Foo" << endl;}

int main ()
{
 Def1 *pcDef1 = new Def1;
 Def1 *pcDef2 = new Def2;
 pcDef1->Foo();
 pcDef2->Foo();
 delete pcDef1;
 delete pcDef2;
}

 Spring 2013 CS250 - Intro to CS II 7

Virtual Destructor

 Any potential base class should have a virtual destructor

 Why? The compiler performs static binding on any destructor not declared virtual

If the following changes are made to the original program, what is the output? Why?

virtual ~Def1 () {cout << "~Def1" << endl;}

virtual void Foo () {cout << "Def1 Foo" << endl;}

virtual void Foo () {cout << "Def2 Foo" << endl;}

int main ()
{
 Def1 *pcDef1 = new Def1;
 Def1 *pcDef2 = new Def2;
 pcDef1->Foo();
 pcDef2->Foo();
 delete pcDef1;
 delete pcDef2;
}

Spring 2013 CS250 - Intro to CS II 8

Base class Person

class Person

{

public:

 Person() { setName(""); }

 Person(string pName) { setName(pName); }

 void setName(string pName) { name = pName; }

 string getName() { return name; }

 private:

 string name;

};

Spring 2013 CS250 - Intro to CS II 9

Derived class Faculty

class Faculty : public Person

{

public:

 Faculty(string fname, Discipline d)

 {setName(fname); setDepartment(d); }

 void setDepartment(Discipline d)

 { department = d; }

 Discipline getDepartment()

 { return department; }

 private:

 Discipline department;

};

Spring 2013 CS250 - Intro to CS II 10

Derived class TFaculty

class TFaculty : public Faculty

{

public:

 TFaculty(string fname, Discipline d, string title) :
Faculty(fname, d)

 {

 setTitle(title);

 }

 void setTitle(string title) { this->title = title; }

 string getName() { return title + " " +
 Person::getName(); }

 private:

 string title;

};

Spring 2013 CS250 - Intro to CS II 11

Polymorphism??

 Is this code polymorphic? If not, how could
we make it polymorphic?

const int NUM_PEOPLE = 5;

Person *arr[NUM_PEOPLE] = {
new Tfaculty(“Indiana Jones”, ARCHEOLOGY, “Dr.”),
new Person(“Thomas Cruise”),
new Faculty(“James Stock”, BIOLOGY),
new Tfaculty(“Sharon Rock”, BIOLOGY, “Professor”),
new TFaculty(“Nicole Eweman”, ARCHEOLOGY, “Dr,”)};

for(int k = 0; k < NUM_PEOPLE; k++)

{

 cout << arr[k]->getName() << endl;

}

Spring 2013 CS250 - Intro to CS II 12

