
Chapter 15
More Inheritance

 Reading: pp. 869-906

 Good Problems to Work: pp. 877-878 15.2, 15.3;
pp. 883-884 15.4, 15.6 C, D; pp. 895-896 15.7,
15.8

Spring 2013 CS250 - Intro to CS II 1

Key Terminology

 Private, Protected, Public class members

 Derived class access of Base class members

 Inheritance

 Constructor call order

 Destructor call order

 Base Access Specifiers

 What derived classes inherit

CS250 - Intro to CS II 2

Protected Members

 Until now, we’ve been working with two

access specifications:

o private

o public

 Another access specification is:

o protected

 CS250 - Intro to CS II 3

Protected Members

 Recall from our Employee example that an Employee
class contained two private members: mName,
mSSN.

 HourlyEmployee was derived from Employee and thus
could not directly access private Employee members

 Protected members of a class are like private
members, except that derived classes may access
protected members directly

 We will not use protected members in this class

CS250 - Intro to CS II 4

Base Access Specifications

 Recall that HourlyEmployee was publicly derived from
Employee

 The base access specification is given by

o class HourlyEmployee: public Employee

 We could also use private or protected

o class HourlyEmployee : public Employee

o class HourlyEmployee : protected Employee

o class HourlyEmployee : private Employee

o class HourlyEmployee : Employee

 The default access specification is private

CS250 - Intro to CS II 5

Base Access Specifiers

CS250 - Intro to CS II 6

Derived Class Inherits?

 A derived class inherits every base class member
except:

1. any constructors

2. destructor

3. operator= members

4. any friends

CS250 - Intro to CS II 7

Type Compatibility

 Objects of a derived class can be used
wherever objects of a base class object are
expected

 Rules for pointers and objects:

o A derived class pointer can always be assigned
to a base class pointer

o A type cast is required to perform the opposite
assignment
 This could cause an ERROR!!!

CS250 - Intro to CS II 8

Example

class Base

{

 public:

 int i;

 Base(int k) {i = k;}

};

class Derived : public Base

{

 public:

 double d;

 Derived(int k, double g) : Base(k) { d = g;}

};

CS250 - Intro to CS II 9

Which are allowed?

 Base *pb = new Base (5);

 Derived *pd = new Derived (6, 10.5);

 Base *pb1 = pd;

 Base *pb2 = new Derived (7, 11.5);

 Derived *pd1 = static_cast<Derived *>(pb1);

 cout << pd1->d;

 pd = static_cast<Derived *>(pb);

 cout << pd->d;

CS250 - Intro to CS II 10

What is the Output?

class Base
{
 protected:
 int baseVar;
 public:
 Base(int val = 2) { baseVar = val; }
 int getVar() { return baseVar; }
};
class Derived : public Base
{
 private:
 int deriVar;
 public:
 Derived(int val = 100) { deriVar = val; }
 int getVar() { return deriVar; }
};
int main()
{
 Base *pObject;
 Derived object;
 pObject = & object;
 cout << pObject->getVar() << endl;
 return 0;
}

CS250 - Intro to CS II 11

