
1CS250 Introduction to Computer Science II

Section 11.6

Skipping 11.3, 11.4, 11.5 for now

Operator Overloading

2CS250 Introduction to Computer Science II

Purpose of Operator Overloading

Operator overloading “extends” the operators
currently defined in the language.

Example: How can we add two Rational numbers?

Presently the following is not possible because the
== operator is not defined for Rational numbers.

Rational cR1 (2,1), cR2 (2,3);
if (cR1 == cR2)
{
 cout << “Fractions are equal”;
}

3

Comparing two Rational numbers

class Rational
{
 public:
 Rational(int = 0, int = 1);
 Rational addition(const Rational &);
 Rational subtraction(const Rational &);
 Rational multiplication(const Rational &);
 Rational division(const Rational &);
 void printRational() const;
 private:
 int numerator;
 int denominator;
 int greatestCommonDivisor (int numOne, int numTwo);
 void reduce();
};

Question: How would we add isEqual to Rational?

CS250 Introduction to Computer Science II

4

Rational “is equal” Solution #1

Add the following method to Rational.h

bool isEqual (const Rational &) const;

Add the following code to Rational.cpp

bool Rational::isEqual (const Rational &cRational) const
{
 return (numerator == cRational.numerator &&
 denominator == cRational.denominator);
}

How do we use isEqual?

Rational cR1 (2, 3), cR2 (2, 3);
if (cR1.isEqual (cR2))

{

}

CS250 Introduction to Computer Science II

5

Rational “is equal” Solution #2

Add the following code to Rational.h

int operator== (const Rational &rop2) const
{
 return (numerator == rop2.numerator) &&
 (denominator == rop2.denominator);
}

The above code is “overloading” the == operator to be
able to compare two Rational objects; thus, the
following code is now legal:

if (cR1 == cR2)
{

}

CS250 Introduction to Computer Science II

6

Rational “is equal” Solution #3

Add the following code to Rational.h

int operator== (const Rational &) const;

Add the following code to Rational.cpp

int Rational :: operator== (const Rational& rop2) const
{
 return (numerator == rop2.numerator) &&
 (denominator == rop2.denominator);
}

What you notice is that any binary operator whether it
be arithmetic, relational, or logical uses the first
operand as a default and the second operand
corresponds to the one formal parameter.

CS250 Introduction to Computer Science II

7

Common Mistake

You might think the statement:

int operator== (const Rational& rop2) const;

should look like:

int operator== (const Rational& rop1,
 const Rational& rop2) const;

but that is not the case. The reason is that the operator function
is defined as a member of the class and as such, one of the
arguments for the operator is implicitly the first object of the
operation. Make a note of this because the compilation error
might be hard to fix.

CS250 Introduction to Computer Science II

	Operator Overloading
	Purpose of Operator Overloading
	Comparing two Rational numbers
	Rational “is equal” Solution #1
	Rational “is equal” Solution #2
	Rational “is equal” Solution #3
	Common Mistake

