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Section 11.6

Skipping 11.3, 11.4, 11.5 for now

Operator Overloading
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Purpose of Operator Overloading

Operator overloading “extends” the operators 
currently defined in the language.

Example: How can we add two Rational numbers?

Presently the following is not possible because the 
== operator is not defined for Rational numbers.

Rational cR1 (2,1), cR2 (2,3);
if (cR1 == cR2)
{
  cout << “Fractions are equal”;
}
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Comparing two Rational numbers

class Rational 
{
  public:
    Rational(int = 0, int = 1); 
    Rational addition(const Rational &);
    Rational subtraction(const Rational &);
    Rational multiplication(const Rational &);
    Rational division(const Rational &);   
    void printRational() const;
  private:
    int numerator;
    int denominator;
    int greatestCommonDivisor (int numOne, int numTwo);
    void reduce();
};

Question: How would we add isEqual to Rational?
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Rational “is equal” Solution #1

Add the following method to Rational.h

bool isEqual (const Rational &) const;

Add the following code to Rational.cpp

bool Rational::isEqual (const Rational &cRational) const
{
  return (numerator == cRational.numerator &&
          denominator == cRational.denominator);
}

How do we use isEqual?

Rational cR1 (2, 3), cR2 (2, 3);
if (cR1.isEqual (cR2))

{
  ....
}
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Rational “is equal” Solution #2

Add the following code to Rational.h

int operator== (const Rational &rop2) const 
{ 
  return (numerator == rop2.numerator) && 
         (denominator == rop2.denominator); 
}

The above code is “overloading” the == operator to be 
able to compare two Rational objects; thus, the 
following code is now legal:

if (cR1 == cR2)
{
  ....
}
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Rational “is equal” Solution #3

Add the following code to Rational.h

int operator== (const Rational &) const; 

Add the following code to Rational.cpp

int Rational :: operator== (const Rational& rop2) const 
{ 
  return (numerator == rop2.numerator) && 
  (denominator == rop2.denominator); 
}

What you notice is that any binary operator whether it 
be arithmetic, relational, or logical uses the first 
operand as a default and the second operand 
corresponds to the one formal parameter.
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Common Mistake

You might think the statement:

int operator== (const Rational& rop2) const;

should look like:

int operator== (const Rational& rop1,
                const Rational& rop2) const;

but that is not the case. The reason is that the operator function 
is defined as a member of the class and as such, one of the 
arguments for the operator is implicitly the first object of the 
operation. Make a note of this because the compilation error 
might be hard to fix.
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