Logical Operators and if/else statement
If Statement

• We may want to execute some code if an expression is \texttt{true}, and execute some other code when the expression is \texttt{false}.

• This can be done with two if statements...

\begin{verbatim}
if (value >= LIMIT)
{
 // do something
}
if (value < LIMIT)
{
 // do something else
}
\end{verbatim}
If/Else (4.3)

- C++ provides a shortcut to combine two `if` statements:
  ```cpp
  if (expression)
  {
      // do stuff
  }
  else
  {
      // do other stuff
  }
  ```

- The statements in the `else` clause are executed only when the expression is false.
Example

```cpp
int number;
cout << "Enter a number, I’ll tell you";
cout << " if it is odd or even: ";
cin >> number;

// use an if/else statement here
```
If/Else: Commenting

// the expression I’m using here
// checks for . . .
// so that I can ...
if (expression)
{
}

} else
{

}
if/else/if statements (4.4)

• What if there are more than two alternatives?

```cpp
if (RAINY == currentWeather) {
    cout << "I need a rain jacket";
}
else if (SUNNY == currentWeather) {
    cout << "I need a my shades";
}
else {
    cout << "I better look outside!";
}
```
What if there are more than two alternatives?

```cpp
if (RAINY == currentWeather) {
    cout << "I need a rain jacket";
}
else if (SUNNY == currentWeather) {
    Why is SUNNY == currentWeather better than currentWeather == SUNNY ?
}
else {
    cout << "I better look outside!";
}
```
Logical Operators (4.7)

- There are three logical operators

 && And

 || Or

 ! Not
Precedence

Precedence Operators (Highest to Lowest)

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>~</code></td>
<td>Negation</td>
</tr>
<tr>
<td><code>!</code></td>
<td>Logical NOT</td>
</tr>
<tr>
<td><code>*</code> / <code>%</code></td>
<td></td>
</tr>
<tr>
<td><code>-</code> / <code>+</code></td>
<td></td>
</tr>
<tr>
<td><code><=</code> / <code>>=</code> / <code>></code> / <code><</code></td>
<td></td>
</tr>
<tr>
<td><code>==</code> / <code>!=</code></td>
<td></td>
</tr>
<tr>
<td><code>&&</code></td>
<td></td>
</tr>
<tr>
<td>`</td>
<td></td>
</tr>
<tr>
<td><code>+=</code> / <code>-=</code> / <code>*=</code> / <code>/=</code> / <code>%=</code></td>
<td></td>
</tr>
</tbody>
</table>
Evaluating Expressions: And &&

- `expr1 && expr2`
- For the complete expression to be true, both `expr1` and `expr2` have to be true
- Example:

 \[
 \text{temp} > \text{HOT} \text{ and } \text{humidity} > \text{STICKY}
 \]

 - These are unbearable heat and humidity conditions
 - Both must be true for the entire expression to be true
Evaluating Expressions: Or ||

- **expr1 || expr2**

- The complete expression is true if either expr1 or expr2 is true

- Examples:

 \[\text{salary} < \text{MIN_SALARY} \text{ || MARRIED} \text{ == status} \]

 - To qualify for financial aid, salary has to be less than some minimum salary or you must be married

 - Only one condition has to be true
Evaluating Expressions: Not !

- !expr
- Unary operator: Negation
- Examples:
 - !(salary < MIN_SALARY)
 - What makes this true? False?
Expression Evaluation

According to the operator precedence and associativity rules given on the previous slide, how will the following expressions be evaluated?

\[
\begin{align*}
 x &< \text{min + max} \\
 \text{min} &\leq x \land x \leq \text{max} \\
 \neg x &== y + 2 \\
 x &= a + b \% 7 \ast 2
\end{align*}
\]
Are these two code snippets equivalent?

```c
int x, y;
if(x > y)
{
    x += y;
}
if(y < x)
{
    y += x;
}
```
Problem

• Write a C++ program segment that allows the user the ability to input an integer from the keyboard.

• If the integer is positive, increment a variable posCount by 1. If the integer is negative, increment a variable negCount by 1. If neither, increment zeroCount by 1

```cpp
int posCount=0, negCount=0, zeroCount=0;
```
Problem

- Write a program that displays a letter grade corresponding to an exam score

 90 - 100 A
 80 - 89 B
 70 - 79 C
 60 - 69 D
 0 - 59 F

```cpp
double examGrade;

// Read exam grade from user
cin >> examGrade;
```
Nested if Statements (4.6)

- Note the indentation of the inner if statements:

```cpp
if (actual > expected) {
    if (MAX == actual) {
        ...
    } else {
        ...
    }
} else {
    ...
}
```
Example

• Write nested if statements that set the correct value in the `wage` variable:

 If your status is full time, and you worked more than 10 years, your wage is $25. All other full time workers have a wage of $15. If your status is part time, you have a wage of $10.

```cpp
const int FULLTIME=0, PARTTIME=1;
double wage;
int yearsWorked, status;
```
Example

- Your local bookstore has asked you to write a program to help them determine the cost of shipping of customers orders. If the order is $30 or less then shipping will cost $5, if the order is over $30 then shipping will be $3
Problem

- The bookstore has now changed it’s shipping policy so that
 - If the order is $30 or less, shipping is $5
 - If the order is over $30 but less than $50, shipping is $3
 - If the order is over $50 then shipping is $2
To terminate a program we can use the `exit(int status)` function

- This is a *function*, not part of the language
 - `#include <stdlib.h>`
- The *status* is returned to the operating system to denote program success or failure
 - Success: 0
 - Failure: non-zero
Practice

- Write a complete program that will ask the user for two integers. Display both integers to the screen only if they are each greater than 1000 and terminate the program with `exit()` otherwise. Use exactly one `if/else`
Floating Point and Relational Operators

- Floating point math may not work out as you expect because of round off errors.

- In Math
 - $6 \times \frac{2}{3} = 4$

- In C++, where 0.66666 is equivalent to $\frac{2}{3}$
 - $6.0 \times 0.66666 =$
 - $6.0 \times 0.66667 =$
 - $6.0 \times 0.666666 =$
 - $6.0 \times \left(\frac{2.0}{3.0} \right) =$
Example

```cpp
double result;

result = 6.0 * 0.666666;

if (result == 4.0) {
    cout << "result == 4.0" << endl;
}

cout << setprecision(6) << fixed
     << result << endl;

cout << setprecision(2) << fixed
     << result << endl;
```
Example

double result;

result = 6.0 * 0.666666;

if(result == 4.0)
{
 cout << "result == 4.0" << endl;
}

cout << setprecision(6) << fixed
 << result << endl;

cout << setprecision(2) << fixed
 << result << endl;