Data Types

Section 2.7 – 2.12
Today

• Last time we covered
 ○ `main` function
 ○ `cout` object
 ○ How data that is used by a program can be declared and stored

• Today we will
 ○ Investigate the various types of data that C++ can handle
Declaration Statements

• Variable declarations

 double area;
 double circle;
 double perimeter, volume;

• Constant declaration

 const double PI = 3.14;
 const double RADIUS = 5.4;
Identifiers

• Programmer-defined names that represent some element of a program

• C++ limits on variable names:
 1. Identifiers must begin with a letter or an underscore
 2. Identifiers must consist of letters, numbers and underscore, nothing else
 3. Identifiers cannot be a keyword

page 42
Identifiers

- Identifiers are case sensitive

  ```
  int totalCost;
  int TotalCost;
  ```

- Use meaningful variable names

  ```
  width
  w
  ```
Identifiers

Q 4.1 Which of the following declarations are invalid and why?

a. `char Letter1;`

b. `char 1letter;`

c. `double inches, kms;`

d. `double inches*num;`

e. `int joe’s;`

f. `Int cent_per_inch;`

g. `double two-dimensional;`

h. `char hello;`

i. `int return;`

j. `double inches; kms;`
Data types

- A **data type** defines:
 - how the computer **interprets** data in memory

- What? What does memory really look like?
 - what is a byte? a bit?
Integers

• The main integer data type is \texttt{int}

• \texttt{ints} are \texttt{finite} (why?)

• An \texttt{int} without a sign (+ or -) is assumed to be positive

• 2,353 is not an \texttt{int}, 2353 is an \texttt{int}

• Operations?
Integer Data Types

- There are six integer data types, each with a different range and a different size
 - what does **unsigned** mean?

- Range of data types is listed on page 44
- see program 2-17 on page 58 for the above output
Variable Ranges

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>short int</td>
<td>2 bytes</td>
<td>–32,768 to 32,767</td>
</tr>
<tr>
<td>int</td>
<td>4 bytes</td>
<td>–2,147,483,648 to 2,147,483,647</td>
</tr>
<tr>
<td>unsigned int</td>
<td>4 bytes</td>
<td>0 to 4,294,967,295</td>
</tr>
<tr>
<td>long int</td>
<td>4 bytes</td>
<td>–2,147,483,648 to 2,147,483,647</td>
</tr>
</tbody>
</table>

- What is the range of an **unsigned short**? Why?
- What data type should you use for a person’s age?
- What data type should you use for the population of the earth? Why?
- What data type should you use for the number of students at Pacific University?
char

- The `char` data type is used to store single characters (letters, digits, special characters)
 - ASCII

- Character literals are enclosed in single quotes

- Examples of character literals are: ‘A’, ‘a’, ‘*’, ‘2’, ‘$’
ASCII Character Set

- page 1097

<table>
<thead>
<tr>
<th>Decimal Value</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td><space></td>
</tr>
<tr>
<td>33</td>
<td>!</td>
</tr>
<tr>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td>66</td>
<td>B</td>
</tr>
<tr>
<td>67</td>
<td>C</td>
</tr>
<tr>
<td>97</td>
<td>a</td>
</tr>
<tr>
<td>98</td>
<td>b</td>
</tr>
<tr>
<td>99</td>
<td>c</td>
</tr>
</tbody>
</table>

http://asciitable.com
Example

// page 48, program 2-11
#include <iostream>

using namespace std;

int main()
{
 char letter;

 letter = 65;
 cout << letter << endl;
 letter = 66;
 cout << letter << endl;
 return 0;
}
Program 4.2

// page 49, program 2-12
#include <iostream>

using namespace std;

int main()
{
 char letter;

 letter = 'A';
 cout << letter << endl;
 letter = 'B';
 cout << letter << endl;
 return 0;
}
string Class

• string is used to store a list of characters

• To indicate the end of a string, a null terminator is used
 ○ why?

• Need to include the preprocessor directive
 ○ #include <string>
 ○ why?
Questions

• Q 4.2 How are the character ‘A’ and the string constant “A” stored in memory?

• Q 4.3 Is the escape character \n a character or a string?

• Q 4.4 How do we declare a char variable and assign it a value?
string Questions

• Q 4.5 How do we declare a variable of type string?

• Q 4.6 How do we assign a value to the variable?

• Q 4.7 How do we output a string constant and a string variable? What is output?
Floating-Point Data Types

- **float, double, long double**
 - positive and negative
 - no unsigned float!

- **Scientific Notation**

- **Examples:**
 - 1.0, -2.3, -0.3, 12E5, -1E-2, 1.4e+8

- 2,353.99 is **not** a **double**

- 2353.99 is a **double**
Variable Sizes

- On my machine the sizes are:

 The size of an int is: 4 bytes.
 The size of a short int is: 2 bytes.
 The size of a long int is: 4 bytes.
 The size of a char is: 1 byte.
 The size of a float is: 4 bytes.
 The size of a double is: 8 bytes.

Press any key to continue.
Variable Size Program

// page 58, program 2-17
#include <iostream>

using namespace std;

int main()
{
 cout << "The size of an int is:\t\t" << sizeof(int) << " bytes.\n";
 cout << "The size of a short int is:\t" << sizeof(short) << " bytes.\n";
 cout << "The size of a long int is:\t" << sizeof(long) << " bytes.\n";
 cout << "The size of a char is:\t\t" << sizeof(char) << " bytes.\n";
 cout << "The size of a float is:\t\t" << sizeof(float) << " bytes.\n";
 cout << "The size of a double is:\t\t" << sizeof(double) << " bytes.\n";

 return 0;
}
Variable Ranges

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>4 bytes</td>
<td>−2,147,483,648 to 2,147,483,647</td>
</tr>
<tr>
<td>short int</td>
<td>2 bytes</td>
<td>−32,768 to 32,767</td>
</tr>
<tr>
<td>long int</td>
<td>4 bytes</td>
<td>−2,147,483,648 to 2,147,483,647</td>
</tr>
<tr>
<td>unsigned int</td>
<td>4 bytes</td>
<td>0 to 4,294,967,295</td>
</tr>
<tr>
<td>char</td>
<td>1 byte</td>
<td>256 character values</td>
</tr>
<tr>
<td>float</td>
<td>4 bytes</td>
<td>±3.4e–38 to ± 3.4e38</td>
</tr>
<tr>
<td>double</td>
<td>8 bytes</td>
<td>±1.7e–308 to ± 1.7e308</td>
</tr>
</tbody>
</table>
How to Choose a Numeric Data Type

• Ask yourself the following questions
 ◦ What are the largest and smallest numbers that may be stored?
 ◦ How much memory does the variable use?
 ◦ Is the variable signed (positive and negative)?
 ◦ How many decimal places of precision does the variable need?
Problem

• What variables will you need for the following program?

• page 71, #4.

• Write a program that computes the tax and tip on a restaurant bill. The user will enter the original bill and the tax rate. Assume a 15% tip. Display the tax amount, tip amount, and total bill on the screen.
Examples

• Remember, the format for declaring variables is:
 - data-type identifier;

• You can declare variables of the different data types as follows
 - int num1;
 - double num2;
 - char letter;
Summary

• In today’s lecture we covered
 ◦ Identifiers
 ◦ Data types
 ◦ How data that is used by a program can be declared and stored

• We have covered sections 2.7 – 2.12 of your textbook