CS 150 Introduction to Computer Science I

Data Types

Section 2.7 - 2.12

Today

- Last time we covered
 - main function
 - cout object
 - How data that is used by a program can be declared and stored
- Today we will
 - Investigate the various types of data that C++ can handle

Declaration Statements

Variable declarations

```
double area;
double circle;
double perimeter, volume;
```

Constant declaration

```
const double PI = 3.14;
const double RADIUS = 5.4;
```

Identifiers

 Programmer-defined names that represent some element of a program

- C++ limits on variable names:
 - Identifiers must begin with a letter or an underscore
 - Identifiers must consist of letters, numbers and underscore, nothing else
 - Identifiers cannot be a keyword page 42

Identifiers

Identifiers are case sensitive

```
int totalCost;
int TotalCost;
```

Use meaningful variable names

```
width
```

W

Identifiers

Q 4.1 Which of the following declarations are invalid and why?

```
a. char Letter1;
b. char 1letter;
c. double inches, kms;
d. double inches*num;
e. int joe's;
   Int cent per inch;
   double two-dimensional;
h. char hello;
i. int return;
   double inches; kms;
```

Data types

- A data type defines:
 - how the computer interprets data in memory

- What? What does memory really look like?
 - what is a byte? a bit?

Integers

The main integer data type is int

ints are finite (why?)

- An int without a sign (+ or) is assumed to be positive
- 2,353 is not an int, 2353 is an int
- Operations?

Integer Data Types

- There are six integer data types, each with a different range and a different size
 - what does unsigned mean?

```
The size of a short is:

The size of an unsigned short is:

The size of an int is:

The size of an unsigned int is:

The size of an unsigned int is:

The size of a long is:

The size of an unsigned long is:

The size of an unsigned long is:

Press any key to continue . . .
```

- Range of data types is listed on page 44
- see program 2-17 on page 58 for the above output

Variable Ranges

Type	Size	Values
short int	2 bytes	-32,768 to 32,767
int	4 bytes	-2,147,483,648 to 2,147,483,647
unsigned int	4 bytes	0 to 4,294,967,295
long int	4 bytes	-2,147,483,648 to 2,147,483,647

- What is the range of an unsigned short?
- What data type should you use for a person's age?
- What data type should you use for the population of the earth?
- What data type should you use for the number of students at Pacific University?

Why?

char

- The char data type is used to store single characters (letters, digits, special characters)
 - ASCII

- Character literals are enclosed in single quotes
- Examples of character literals are: 'A',
 'a', '*', '2', '\$'

ASCII Character Set

page 1097

Decimal Value	Character
32	<space></space>
33	!
65	A
3233656667	В
	С
97	а
	b
99	С

http://asciitable.com

Example

```
// page 48, program 2-11
#include <iostream>
using namespace std;
int main()
  char letter;
  letter = 65;
  cout << letter << endl;</pre>
  letter = 66;
  cout << letter << endl;</pre>
  return 0;
```

Program 4.2

```
// page 49, program 2-12
#include <iostream>
using namespace std;
int main()
  char letter;
  letter = 'A';
  cout << letter << endl;</pre>
  letter = 'B';
  cout << letter << endl;</pre>
  return 0;
```

string Class

string is used to store a list of characters

- To indicate the end of a string, a null terminator is used
 - why?

- Need to include the preprocessor directive
 - o #include <string>
 - o why?

Questions

 Q 4.2 How are the character 'A' and the string constant "A" stored in memory?

 Q 4.3 Is the escape character \n a character or a string?

 Q 4.4 How do we declare a char variable and assign it a value?

string Questions

 Q 4.5 How do we declare a variable of type string?

 Q 4.6 How do we assign a value to the variable?

 Q 4.7 How do we output a string constant and a string variable? What is output?

Floating-Point Data Types

- float, double, long double
 - positive and negative
 - o no unsigned float!
- Scientific Notation
- Examples:
 - 1.0, -2.3, -0.3, 12E5, -1E-2, 1.4e+8
- 2,353.99 is **not** a **double**
- 2353.99 is a double

Variable Sizes

On my machine the sizes are

```
"c:\documents and settings\shereen\desktop\variablesize\debug\VariableSize.exe"
The size of an int is:
                                       bytes.
 he size of a short int is:
                                     2 bytes.
he size of a long int is:
                                     4 bytes.
 he size of a char is:
                                     1 bytes.
 he size of a float is:
                                     4 bytes.
The size of a double is:
                                     8 bytes.
Press any key to continue_
```

Variable Size Program

```
// page 58, program 2-17
#include <iostream>
using namespace std;
int main()
{
  cout << "The size of an int is:\t\t"</pre>
                                             << sizeof(int)
                                                                 << " bytes.\n";
  cout << "The size of a short int is:\t" << sizeof(short)</pre>
                                                                 << " bytes.\n";
  cout << "The size of a long int is:\t"</pre>
                                             << sizeof(long)
                                                                 << " bytes.\n";
  cout << "The size of a char is:\t\t"</pre>
                                             << sizeof(char)
                                                                 << " bytes.\n";
  cout << "The size of a float is:\t\t"</pre>
                                             << sizeof(float) << " bytes.\n";</pre>
  cout << "The size of a double is:\t"</pre>
                                             << sizeof(double) << " bytes.\n";</pre>
  return 0;
```

Variable Ranges

Type	Size	Values
int	4 bytes	-2,147,483,648 to 2,147,483,647
short int	2 bytes	-32,768 to 32,767
long int	4 bytes	-2,147,483,648 to 2,147,483,647
unsigned int	4 bytes	0 to 4,294,967,295
char	1 byte	256 character values
float	4 bytes	±3.4e–38 to ± 3.4e38
double	8 bytes	±1.7e–308 to ± 1.7e308

How to Choose a Numeric Data Type

- Ask yourself the following questions
 - What are the largest and smallest numbers that may be stored?
 - How much memory does the variable use?
 - Is the variable signed (positive and negative)?
 - How many decimal places of precision does the variable need?

Problem

- What variables will you need for the following program?
- page 71, #4.
- Write a program that computes the tax and tip on a restaurant bill. The user will enter the original bill and the tax rate. Assume a 15% tip. Display the tax amount, tip amount, and total bill on the screen.

Examples

- Remember, the format for declaring variables is:
 - o data-type identifier;
- You can declare variables of the different data types as follows
 - o int num1;
 o double num2;
 - o char letter;

Summary

- In today's lecture we covered
 - Identifiers
 - Data types
 - How data that is used by a program can be declared and stored

 We have covered sections 2.7 – 2.12 of your textbook