C++ Coding Standards
CS150

Version 1.0

Why have coding standards?

It is a known fact that 80% of the lifetime cost of a piece of software goes to maintenance. Therefore it makes sense for all programs within an organization to be as consistent as possible. Code conventions also improve the readability of the software.

This document specifies the coding standards for the first part of the course entitled CS150 Introduction to Computer Science I at Pacific University. It is important for you to adhere to these standards in order to receive full credit on your assignments.

The document is divided into three main sections:

· Naming Conventions

· Formatting

· Comments

· Printing

Naming Conventions

Constants

A constant is to be mnemonically defined using all capital letters such as PI. Further, your program is to contain no "magic constants." That is, all magic constants must be defined using const to make program modification easier. In the case below, 3.14159 is a magic constant and if used in several places throughout a program, can create problems if 3.14159 is to be modified for any reason such as more precision for PI is required. Also, some people might forget what 3.14159 is but probably no one will forget what PI stands for.
Poor Program Style

area = 3.14159 * radius * radius;
Correct Program Style

const int PI = 100;

…
Area = PI * radius * radius;

Variable Names

1) A variable name is defined in all lowercase letters unless the variable name contains multiple names such as studentGrade. After the first word, each subsequent word has the first letter capitalized with the remainder of the word made up of lowercase letters.

2) You are to use meaningful variable names.
Poor Program Style

int l, w, a;
…

a = l * w;

Good Program Style

int length;

int width;

int area;
…

area = length * width;

Formatting

Indentation

Two spaces must be used as the unit of indentation per tab. Every IDE (Integrated Development Environment) such as Visual .NET or Eclipse includes an option for changing the number of spaces in a tab. These can usually be found in the preferences section.

Line Length

Lines must be no longer than 80 characters. Anything longer than that is normally not handled well in many terminals and tools.

Wrapping Lines

If an expression cannot fit on a single line then break it:

· After a comma

· Before an operator

Make sure that the new line is aligned with the beginning of the expression at the same level on the previous line.

Spaces

All arithmetic and logical operators must have one space before and after the operator. The only exceptions are:

· Unary operators

· The period

· No spaces before the comma and only one space after the comma

Blank Lines

Use blank lines to separate distinct pieces of code. For example, separating the #includes from the rest of the program and breaking up long sections of code into logical units. The important thing to remember is that blank lines are an important part of programming and must be used consistently.

Braces

Any curly braces that you use in your program (e.g. for the main program function) must appear on their own lines. Any code within the braces must be indented relative to the braces.

int main ()
{

 int length;

 int width;

 cin >> length >> width;

 cout << “area =” << length * width;

}

Comments
Comments should be used to explain the purpose of the code fragment they are grouped with. Comments should state what the code is doing, while the code itself shows how you are doing it.

Use comments sparingly and only comment code segments that are not obvious. Giving your variables meaningful names will improve the readability of your code and reduce the need for comments.

File Header

The main purpose of a file header is to explain the purpose of the program as briefly as possible. You must include the following sections in your program header:

· File name

· Your name

· Date

· Class and Assignment Title

· Purpose

//**
// File name: myprogram.cpp

// Author: Joe Bloggs

// Date: 8/29/2005
// Class: CS150

// Assignment: Area of a Rectangle
// Purpose: This program will read the length and
// width of a rectangle from the keyboard

// and output the area of the rectangle.

//**
Declaration Comments

Variables should be declared as one per line. Each variable should have a sidebar comment to the right of it indicating the variable’s purpose. Do not put any blank lines between the variables being declared. You should also group together variables that are related.

int seconds;

 // Range (0-59)

int minutes;

 // Range (0-59)

int hours
;

 // Range (0-23)

int length; // length of a rectangle

int width; // width of a rectangle

int area; // area of a rectangle

Printing

When printing your code you must use a fixed width font. Courier and Courier New are examples of fixed width fonts. You must also make sure that your lines do not wrap nor do they get cut off when printing. All printing is to be done in Portrait and the printing order for the files is as follows:

