Topological Sort

- A topological sort is performed on a **directed acyclic graph**.
- A **topological sort** is a linear ordering of all vertices of a graph such that if G contains an edge \((u, v)\), then \(u\) appears before \(v\) in the ordering.
Topological Sort

- A topological sort of a graph can be viewed as an ordering of its vertices along a horizontal line so that all directed edges go from left to right
- Directed Acyclic Graphs (DAG) are used in many applications to indicate precedences among events
- What is a DAG?

Topological Sort

- Good for modeling processes and structures that have a partial order:
 - $a > b$ and $b > c$ implies that $a > c$
 - But may have a and b such that neither $a > b$ nor $b > c$
TOPOLOGICAL-SORT(G)

- Call DFS(G) to compute finishing times f[v] (i.e. v.f) for each vertex v
- As each vertex is finished, insert it onto the front of a linked list
- Return the linked list of vertices

Example

(a)

(b)
Topological Sort

- Running time for topological sort is:

Strongly Connected Components

- Given a directed graph $G = (V, E)$, a strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$ both $u \rightarrow v$ and $v \rightarrow u$ exists.
- Note this partitions the set of vertices V into disjoint subsets.
Example

Identify the strongly connected components

Transpose

Algorithm uses $G^T = \text{transpose of } G$

- G^T

- How long does it take to create G^T if using adjacency lists?

- Observation: G and G^T have the same SCC’s.
SCC(G)

- Call DFS(G) to compute finishing times $f[u]$ for all u
- Compute G^T
- Call DFS(G^T), but in the main loop, consider vertices in order of decreasing $f[u]$ (as computed in first DFS)
- Output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Example