Theorem (07HeapSort Lecture) A complete binary tree with \(n \) nodes has height \(h = \lceil \log_2(n) \rceil \).

Proof: A complete binary tree of height \(h \) can accommodate between \(2^h \) and \(2^{h+1} - 1 \) nodes. If \(n \) is the number of nodes, let \(h \) be the smallest number for which

\[
2^h \leq n \leq 2^{h+1} - 1.
\]

The left-hand inequality yields \(h \leq \log_2 n \) which in turn implies that \(h = \lceil \log_2 n \rceil \).

Theorem: A red-black tree with \(n \) internal nodes has height at most \(h = \lceil 2 \log_2(n+1) \rceil \).

NOTE: This implies that in the worst-case scenario, a red-black tree is (approximately) only twice as deep as the corresponding complete (or perfect) binary tree. To prove this theorem, we need a lemma:

Lemma: For any node \(x \), the subtree rooted at \(x \) contains at least \(2^{bh(x)} - 1 \) internal nodes (i.e. nodes that have children).

Proof: Proceed by induction on the height \(h(x) \) of the tree whose root is the node \(x \). If the height if \(h(x) = 0 \), then the node must be a leaf (remember the height is measured from the bottom of the tree and the depth is measured from the top (root) of the tree) which must necessarily have black-height of 0. Furthermore, this leaf node also contains at least \(2^{bh(x)} - 1 \) = \(2^0 - 1 \) = 0 nodes, so the basis step of the induction is true.

Assume now that the result holds for any subtree rooted at a node of positive height \(n \), and let \(x \) be a node whose height is \(n + 1 \). We need to prove that result holds for this node \(x \). To do this, consider each of the children of node \(x \), both of whose heights must be \(n \) so the inductive hypothesis will apply. Notice that the black-height of each of the child nodes with either be equal to the black-height of the parent \(bh(x) \) or one less than the black-height of the parent \(bh(x) - 1 \) depending on whether that child is red or black, respectively. Thus, in the worst-case scenario in which both of the children are black, by the inductive hypothesis we known that each child would have at least \(2^{bh(x)} - 1 \) = \(2^0 - 1 \) = 0 nodes, so the total number of nodes in the tree rooted at \(x \) must be at least the sum of the two worst-case scenarios for the children plus one for the root node \(x \):

\[
2^{bh(x)} - 1 + 2^{bh(x)} - 1 - 1 + 1 = 2 \cdot 2^{bh(x)} - 1 = 2^{bh(x)} - 1.
\]

This proves the result is true for a node of height \(n + 1 \), so the lemma is true by induction.

Proof of Theorem: Suppose that \(h \) is the height of the given red-black tree with \(n \) nodes. Because any red parent within a red-black tree must necessarily have two black children, we known that any path from the root to a leaf must necessarily contain at least \(h/2 \) black nodes. In particular, if \(x \) is the root node, then \(bh(x) \geq h/2 \), so by our lemma the corresponding tree must contain at least

\[
2^{bh(x)} - 1 \geq 2^{h/2} - 1
\]

internal nodes \(n \), thus \(n \geq 2^{h/2} - 1 \). Solving this expression for \(h \) gives \(\log_2(n+1) \geq h/2 \) from which it follows that \(h \leq \lceil 2 \log_2(n+1) \rceil \).