Quick Review

• Alphabet: $\Sigma = \{a,b\}$
 Σ^*: Closure:
• String: any finite sequence of symbols from a given alphabet. $|w| = \text{length}$
 Concatenation/Prefix/Suffix/Reverse
• Language L over Σ is a subset of Σ^*
 $L = \{ x \mid \text{rule about } x \}$
 Concatenation/Union/Kleene Star
 Recursive Definition
Finite State Automata

- How can we reason about computation?
- Simple model of computation
 - Finite
 - State
 - Automata
 - Memory?
 - Many Automata
 - One automaton

Example

How would we represent Tic-tac-toe in C/C++?

How is this different than a finite state automata?

- X always goes first.
- How many possible board configurations (ignore the rules)?
- How many possible valid tic-tac-toe configurations?

Computation

• Recognize patterns in data
• Build an automaton that can classify a string as part of a language or not
• Why?

Language:

$L = \{ x \in \{0,1\}^* \mid x \text{ contains at least one } 1 \text{ and the last } 1 \text{ is followed by even number of } 0s \}$

$T = \{ x \mid x \text{ represents a winning tic-tac-toe board} \}$

Deterministic Finite Automata

Set of all strings (A) accepted by a machine (M) is the Language of the Machine M recognizes A or M accepts A
Formal Definition

• Deterministic Finite Automata:

5-tuple \((Q, \Sigma, \delta, q_0, F)\)
- \(Q\): finite set of states
- \(\Sigma\): alphabet (finite set)
- \(\delta\): transition function \((\delta: Q \times \Sigma \rightarrow Q)\)
- \(q_0\): start state
- \(F\): accepting states (subset of \(Q\))
Q: What strings get accepted?
\[\Sigma: \]
\[\delta: \]
\[q_0: \]
\[F: \]
L(M) = \{
\}

Designing a DFA

• Identify small pieces
 – alphabet, each state needs a transition for each symbol
 – finite memory, what crucial data does the machine look for?
 – can things get hopeless? do we need a trap?
 – where should the empty string be?
 – what is the transition into the accept state?
 – can you transition out of the accept state?

• Practice!
L(M) = \{w \mid w = \varepsilon \text{ or } w \text{ ends in } 1\}
\Sigma = \{0,1\}

Q:
\delta :
q_0 :
F :

\bullet \Sigma = \{0,1\}, L(M) = \{w \mid \text{odd # of } 1s\}
Build a DFA to do math!
$L(M) =$ Accept sums that are multiples of 3
$\Sigma = \{0,1,2, \text{<Reset>}\}$

Keep a running total of input, modulo 3

$\bullet \Sigma = \{0,1\}, \ L(M)=\{w \mid \text{begins with 1, ends with 0}\}$
\[\Sigma = \{0,1\}, \ L(M) = \{w \mid \text{contains 110}\} \]

\[\Sigma = \{0,1\}, \ L(M) = \{w \mid \text{does not contain 110}\} \]
• $\Sigma = \{0, 1\}$, $L(M) = \{w \mid (01)^* \}$

• $\Sigma = \{0, 1\}$, $L(M) = \{w \mid w$ even #0s, odd #1s $\}$
• $\Sigma = \{0,1\}$, $L(M) = \{w \mid w \text{ any string except 11 and 111}\}$

Formal Definition of Computing

• Given a machine $M = (Q, \Sigma, \delta, q_0, F)$ and a string $w = w_1 w_2 \ldots w_n$ over Σ, then M accepts w if there exists a sequence of states r_0, r_1, \ldots, r_n in Q such that:

 $- r_0 = q_0 : r_0$ is the start state
 $- \delta (r_i, w_{i+1}) = r_{i+1}, i=0,\ldots,n-1$: legal transitions
 $- r_n \in F :$ stop in an accept state

• If $A = \{w \mid M \text{ accepts } w\}$

• Language A is **regular** if there exists a Finite Automaton that recognizes A.

CS 310 – Fall 2016
Pacific University