Running time

• $A = \{0^k1^k \mid k \geq 0 \}$
 – how long (how many steps?) will it take a single-tape TM to accept or reject a string?

• The running time
 – input of length n
 – worst case running time
• M is a “$f(n)$ time TM”
Example

• $f(n) = 5n^3 + 4n^2 + 6n + 1$
 – the goal here is to see how the running time grows as n increases
 – for large n, $5n^3$ dominates this equation
 – coefficient 5 is immaterial
 – we say $f(n) = O(n^3)$

Big Oh $O(\)$

• Asymptotic analysis
 – estimate runtime of algorithm (or TM) on large inputs
 – only look at highest order term
 – allows us to compare runtime of two algorithms
Definition: Big Oh

- f, g are functions: $f, g: \mathbb{N} \rightarrow \mathbb{R}^+$
 - $f(n) = O(g(n))$ if positive ints c and n_0 exist such that for every int $n \geq n_0$:

 $$f(n) \leq c \cdot g(n)$$

 - $g(n)$ is an *asymptotic upper bound* for $f(n)$:
 - some constant multiple of $g(n)$ eventually dominates $f(n)$

- \mathbb{R}^+: set of non-negative real numbers

Example

- $f(n) = 5n^3 + 2n^2 + 22n + 6$
- $O(f(n)) = n^3$
- let $c = 6$ and $n_0 = 10$

- $5n^3 + 2n^2 + 22n + 6 \leq 6n^3$
 - for every $n \geq n_0$

- $O(f(n)) = n^4$ as well, but we want the tightest upper bound
Logarithms

\[x = \log_2 n \quad \Rightarrow \quad 2^x = n \]

\[\log_b n = \frac{\log_2 n}{\log_2 b} \]

\[f(n) = O(\log n) \]

Example

- \[f(n) = 3n \log_2 n + 5n \log_2 (\log_2 n) + 2 \]
- \[f(n) = O(g(n)) = ? \]
- Since \(\log_2 n \leq n \) then
- \(\log_2 (\log_2 n) \leq \log_2 (n) \)
- so \(f(n) = O(n \log_2 n) \)
Analyzing Algorithms

• $A = \{0^k1^k \mid k \geq 0\}$
 on input of length n:

 1) scan, reject if 0 found to right of a 1
 2) if both 0’s and 1’s remain, scan, cross off single 0, single 1
 3) if 0’s remain after 1’s crossed off or conversely, reject. otherwise accept.

Analysis

• Step 1: scan, verify: n steps forward, n steps back: $2n$ steps so $O(n)$

• Step 2: scan, cross off 0 and 1 each scan. Each scan uses $O(n)$ steps, $n/2$ scans at most, so $O(n^2)$

• Step 3: Scan, accept or reject $O(n)$

• Total: $O(n) + O(n^2) + O(n)$
 $=$ $O(n^2)$
Algorithm

• If we had a two tape TM, could we do this in $O(n)$?
 – linear time?

Complexity relationships between models

• Theorem 7.8: let $t(n) \geq n$, every $t(n)$ time multitape TM has an equivalent $O(t(n)^2)$ time single-tape TM.

• Theorem 7.9: Every $t(n) \geq n$ time ND single tape TM has an equivalent $2^{O(t(n))}$ time deterministic single tape TM