Reduction

• Convert one problem (A) into a second problem (B)
 – solution to B can be used to solve A
 – If B is decidable, so is A
 – If A is undecidable, so is B

– Is Z undecidable? Prove it is reducible to Y, which has previously been shown to be undecidable
Halting Problem

$\text{HALT}_{TM} = \{ <M,w> | M \text{ is a TM and } M \text{ halts on input } w \}$

undecidable?

• Proof: Assume HALT_{TM} is decidable, show that if true, A_{TM} is decidable.
 – Contradiction!

• A_{TM} is reducible to HALT_{TM}

Proof

• Assume TM R decides HALT_{TM}
 • Use R to build TM S that decides A_{TM}

 • S: Run TM R on $<M, w>$
 – If R rejects, reject
 – If R accepts, run M on w until M halts
 • If M accepts, accept, if M rejects, reject
 • If R decides HALT_{TM} then A_{TM} is decidable
 • A_{TM} is reducible to HALT_{TM}
TM Equality

• \(\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \)

• \(\text{E}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \)
 – undecidable (see TH 5.2 p 189)

• Show that if \(\text{EQ}_{\text{TM}} \) were decidable, so would be \(\text{E}_{\text{TM}} \)
• Reduction from \(\text{E}_{\text{TM}} \) to \(\text{EQ}_{\text{TM}} \)
 – \(\text{E}_{\text{TM}} \) is a special case of \(\text{EQ}_{\text{TM}} \) where \(L(M_i) = \emptyset \)

Computation Histories

• List of configurations a TM goes through

• Configuration
 – Current State
 – Current Tape State
 – Read/Write Head location

• Finite sequence that ends in accept or reject
Linear Bounded Automaton

- Cannot move read/write head off portion of tape with original input

- May have larger tape alphabet than input alphabet
 - Allows for larger memory than just number of tape positions
 - Increase by constant factor

Proof

- $A_{LBA} = \{<M,w> | M is an LBA that accepts string w\}$

- Decidable
 - Proof using computation histories
 - LBA with q states, g symbols in tape alphabet, input tape of length n
 - How many possible configurations are there?
 - ???