Decidability

• “the power of algorithms to solve problems.” p 165

• What are the limits of algorithmic solvability?
• How can we tell if two Regular Expressions define the same language?
 — or, can we?
• A language is **decidable** if some TM decides it
Decidable

• Take a question
 – turn it into a language where answer is yes
• accept: yes
• reject: no
 – encode in a string
 – build TM
 – If always halts: decidable!

Decidable? Recognizable?

• \{ x \mid x \text{ is prime, } y \text{ is prime, } x \text{ is a substring of } y, x \in \{0..9\}^+, y \in \{0..9\}^+ \}\n
• \{ x \mid x \text{ is prime, } y \text{ is prime, } x \text{ is a proper substring of } y, x \in \{0..9\}^+, y \in \{0..9\}^+ \}\n
• \{ y \mid x \text{ is prime, } y \text{ is prime, } x \text{ is a proper substring of } y, x \in \{0..9\}^+, y \in \{0..9\}^+ \}\
Decidability

• Acceptance Problem (DFA): Does a given DFA, \(B \), accept a given string \(w \)?
• In terms of languages (because we have defined computation as accept/reject a language):
 – \(A_{DFA} = \{ <B, w> \mid B \text{ is a DFA that accepts } w \} \)
 – For ALL input pairs \(<B, w> \) can a single TM be constructed that will decide \(<B, w> \in A_{DFA} \)
• can we build one TM that will work for all DFAs?
• is there an algorithmic way to solve this problem?

Theorem

• \(A_{DFA} \) is decidable
 – given \(<B, w> \) we can decide if \(<B, w> \in A_{DFA} \) or \(<B, w> \notin A_{DFA} \)

• Proof Idea:
 – Use a TM, \(M \), to simulate \(B \) with input \(w \)
 – Keep track of current state and current position on the input string
 – Update according to the DFA’s \(\delta \)
 – When \(M \) finishes processing last symbol of \(w \), \(M \) accepts if \(B \) is in accept state, reject otherwise
Also…

• A_{NFA} and A_{REX} are also decidable
 – why?

Emptiness testing

• Does a finite automata accept any strings at all?
 – $E_{DFA} = \{ <A> \mid A \text{ is a DFA and } L(A) = \emptyset \}$
• Theorem: E_{DFA} is decidable
• Proof Idea:
 – is it possible to reach an accept state from q_0?
 – If no accept state is marked, accept (i.e. $<A>$ is in E_{DFA}, otherwise reject
Equivalence testing

• Do two DFAs recognize the same language?
 \[EQ_{DFA} = \{ <A, B> \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \]

• Theorem: \(EQ_{DFA} \) is decidable
 – Proof: Construct TM \(T \), with language \(L(C) \) symmetric difference of \(L(B) \), \(L(A) \)
 (so \(L(C) \) is empty if \(L(A) = L(B) \)). Then construct \(T \) as in \(E_{DFA} \): IF \(T \) accepts,
 accept, if \(T \) rejects...reject.

Question

• Can we tell if two Regular Expressions define the same language?

 – why or why not?
CFGs

- $A_{CFG} = \{<G, w> | G \text{ is a CFG that generates } w\}$
- A_{CFG} is decidable

- Could enumerate all strings produced by G: could be infinite, though
- Proof Idea

Equivalence of CFGs

- $EQ_{CFG} = \{<G, H> | G \text{ and } H \text{ are CFL and } L(G) = L(H)\}$
 - not decidable
 - Issue: CFG’s not closed under complementation or intersection, so technique in EQ_{DFA} doesn’t work.