Pumping Lemma
Section: 1.4
September 26, 2016
Lecture 10

String Review

• w is a string
• |w| is

• ww means
• w^n means

• w = xyz, x is a ____________ of w

z is a ____________ of w
Non-Regular Languages

• Languages that cannot be represented by a finite automaton
 – Such as?

• How do we prove a language is not regular?
 – What characteristics must a language have to be regular?

 \[C = \{ w \mid w \text{ has an equal number of 0s and 1s} \} \]
 \[D = \{ w \mid w \text{ has an equal number of occurrences of 01 and 10 as substrings} \} \]

Pumping Lemma (Informal)

Pumping: The length of the string could be ‘pumped’ up by repeating a cycle in the FA, and the string would still be accepted.

• All regular languages have a property
 – the pumping length, \(p \)

• \(|w| = n \), how many states do we go through?
Pumping Lemma (Formally)

- DFA: \(M = (Q, \Sigma, \delta, q_0, F) \)
- If \(|Q| = p\) and \(s \in L(M)\) and \(|s| \geq p\) then there exists at least one state that was visited twice within the first \(p\) input symbols

\[s = xyz \]

\(p \) – pumping length

- For every regular language, some integer \(p\) exists.
- We do not care what the actual integer value of \(p\) is
- We will always refer just to \(p\)
Pumping Lemma (Formally)

• If A is a regular language, then:

\[s = xyz \]

\[i \geq 0, \ xy^iz \in L(M) \]

\[|y| > 0 \quad (x, z \text{ may be } \epsilon) \]

\[|xy| \leq p \]

Pumping Lemma In Action

• Find a string, \(s \in L, |s| \geq p \), that cannot be pumped to show language L is not regular.

– Find a string that exhibits the “essence” of nonregularity

– **Hint:** choose a string that explicitly references the value p!

– Proof method?

• \(L = \{ w \mid w \text{ contains equal number of 0s and 1s} \} \)
Practice

•\(L = \{ \text{ww} \mid w \in \{0, 1\}^* \} \)

What string should we chose?

what does \text{ww} mean?

Can that be pumped?

Regular vs Non-Regular

\(L = \{ 1^n \} \quad \Sigma = \{0, 1\} \)

\(L = \{ 1^n0^n \} \)

\(L = \{ 1^n \mid n \geq 0 \} \)

\(L = \{ 0^n1^n \mid n \geq 0 \} \)
Examples Galore!

- $L = \{ a^n b^m \mid m > n \}$
- $L = \{ a^n b^m \mid m \text{ is odd}, n \text{ is even}, m>0, n>0 \}$
- $L = \{ w1w^R \mid w \in \{0,1\}^* \}$
- $L = \{ a^n b^m \mid m \neq n \}$
- $L = \{ a^{2n} \mid n > 0 \}$
- $L = \{ a^n \mid n \text{ is prime} \}$
- $L = \{ a^n b^m c^{n+m} \mid n, m > 0 \}$
- $L = \{ w^R \mid w \in \{0,1\}^*, w \text{ is a perfect square in binary} \}$
- $L = \{ wbbw \mid w \in \{a, b\}^* \}$
- $L = \{ (ac)^n b^m \mid n > m >= 0 \}$
- $L = \{ a^n b^m \mid m > 2, n > 2 \}$

Show for each language:
- Are any of these languages regular?
- Can we write any of them as a regular expression?

Practice

- $L = \{ w \mid 1^n0^m1^n, n > 0, m >=0 \}$ Is L regular?
- Which of the following strings are in L and do not violate the pumping lemma?

- $s=10^p1$ \hspace{2cm} $x =$
- $s=1^2p$ \hspace{2cm} $y =$
- $s=1^p0^p1^p$ \hspace{2cm} $z =$
- $s=0$ \hspace{2cm} xy^iz
- $s=1^p0^p1^p$ \hspace{2cm} $i >=0$
<table>
<thead>
<tr>
<th>More Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L = \left{ w \mid 1^n0^m1^n, 0 < n < 4, m \geq 0 \right}) Is (L) regular?</td>
</tr>
<tr>
<td>(L = \left{ wy \mid w, y \in {0, 1}^*,</td>
</tr>
<tr>
<td>(L = \left{ wy \mid w, y \in {0, 1}^*,</td>
</tr>
<tr>
<td>(L = \left{ wy \mid w \in {a, b}^, y \in {0, 1}^,</td>
</tr>
</tbody>
</table>