3. Functions
3.1 • What Is a Function?
What is a Function?

Perhaps the most useful mathematical idea for modeling the real world is the concept of function, which we study in this chapter.

- In this section, we explore the idea of a function and then give the mathematical definition of function.
Functions All Around Us
Functions All Around Us

• For example,
 ◦ Your height depends on your age.
 ◦ The temperature depends on the date.
 ◦ The cost of mailing a package depends on its weight.
We use the term function to describe this dependence of one quantity on another.

That is, we say:

- Height is a function of age.
- Temperature is a function of date.
- Cost of mailing a package is a function of weight.
Functions All Around Us

Here are some more examples:

- The area of a circle is a function of its radius.
- The number of bacteria in a culture is a function of time.
- The weight of an astronaut is a function of her elevation.
- The price of a commodity is a function of the demand for that commodity.
The rule that describes how the area A of a circle depends on its radius r is given by the formula

$$A = \pi r^2$$
Even when a precise rule or formula describing a function is not available, we can still describe the function by a graph.

- For example, when you turn on a hot water faucet, the temperature of the water depends on how long the water has been running.
- So we can say that: Temperature of water from the faucet is a function of time.
The figure shows a rough graph of the temperature T of the water as a function of the time t that has elapsed since the faucet was turned on.
Temperature of Water from a Faucet

- The graph shows that the initial temperature of the water is close to room temperature.
- When the water from the hot water tank reaches the faucet, the water’s temperature T increases quickly.
Temperature of Water from a Faucet

- In the next phase, T is constant at the temperature of the water in the tank.
 - When the tank is drained, T decreases to the temperature of the cold water supply.
Function

• A function is a rule.

 ◦ To talk about a function, we need to give it a name.

 ◦ We will use letters such as f, g, h, \ldots to represent functions.

 ◦ For example, we can use the letter f to represent a rule as follows:
 “f” is the rule “square the number”
When we write $f(2)$, we mean “apply the rule f to the number 2.”

- Applying the rule gives $f(2) = 2^2 = 4$.

- Similarly,

 $f(3) = 3^2 = 9$

 $f(4) = 4^2 = 16$

 and, in general,

 $f(x) = x^2$
A function f is:

- A rule that assigns to each element x in a set A exactly one element, called $f(x)$, in a set B.
Domain & Range

- The set A is called the domain of the function.

- The range of f is the set of all possible values of $f(x)$ as x varies throughout the domain, that is,

$$\text{range of } f = \{f(x) \mid x \in A\}$$
Independent and Dependent Variables

- The symbol that represents an arbitrary number in the domain of a function \(f \) is called an independent variable.

- The symbol that represents a number in the range of \(f \) is called a dependent variable.
So, if we write

\[y = f(x) \]

then

- \(x \) is the independent variable.
- \(y \) is the dependent variable.
It’s helpful to think of a function as a machine, actually think about it as a computer.

If \(x \) is in the domain of the function \(f \), then when \(x \) enters the machine, it is accepted as an input and the machine produces an output \(f(x) \), according to the rule of the function.

Figure 3
The domain as the set of all possible inputs.

The range as the set of all possible outputs.
Another way to picture a function is by an arrow diagram.

- Each arrow connects an element of A to an element of B.
- The arrow indicates that $f(x)$ is associated with x, $f(a)$ is associated with a, and so on.
A function f is defined by the formula $f(x) = x^2 + 4$

(a) Express in words how f acts on the input x to produce the output $f(x)$.

(b) Evaluate $f(3)$, $f(-2)$, and $f(\sqrt{5})$.

(c) Find the domain and range of f.

(d) Draw a machine diagram for f.
E.g. 1—The Squaring Function

The formula tells us that \(f \) first squares the input \(x \) and then adds 4 to the result.

- So \(f \) is the function “square, then add 4”
The values of f are found by substituting for x in $f(x) = x^2 + 4$.

- $f(3) = 3^2 + 4 = 13$
- $f(-2) = (-2)^2 + 4 = 8$
- $f(\sqrt{5}) = (\sqrt{5})^2 + 4 = 9$
The domain of f consists of all possible inputs for f.

- Since we can evaluate the formula for every real number x, the domain of f is the set \mathbb{R} of all real numbers.

The range of f consists of all possible outputs of f.

- Since $x^2 \geq 0$ for all real numbers x, we have $x^2 + 4 \geq 4$, so for every output of f we have $f(x) \geq 4$.

Thus, the range of f is:

$$\{y \mid y \geq 4\} = [4, \infty)$$
Here’s a machine diagram for the function.

![Machine Diagram]

FIGURE 5 Machine diagram
Evaluating a Function

- In the definition of a function the independent variable x plays the role of a “placeholder.”

 - For example, the function $f(x) = 3x^2 + x - 5$ can be thought of as:

 $f(__) = 3 \cdot __^2 + __ - 5$

 - To evaluate f at a number, we substitute the number for the placeholder.
E.g. 2—Evaluating a Function

Let \(f(x) = 3x^2 + x - 5 \).

Evaluate each function value.

(a) \(f(-2) \)
(b) \(f(0) \)
(c) \(f(4) \)
(d) \(f(\frac{1}{2}) \)
Evaluating a Function

• To evaluate f at a number, we substitute the number for x in the definition of f.

(a) $f(-2) = 3 \cdot (-2)^2 + (-2) - 5 = 5$

(b) $f(0) = 3 \cdot 0^2 + 0 - 5 = -5$

(c) $f(4) = 3 \cdot 4^2 + 4 - 5 = 47$

(d) $f \left(\frac{1}{2} \right) = 3 \cdot \left(\frac{1}{2} \right)^2 + \frac{1}{2} - 5 = -\frac{15}{4}$
A piecewise defined function

- A cell phone plan costs $39 a month.

 - The plan includes 400 free minutes and charges 20¢ for each additional minute of usage.
 - The monthly charges are a function of the number of minutes used, given by:

\[
C(x) = \begin{cases}
39 & \text{if } 0 \leq x \leq 400 \\
39 + 0.20(x - 400) & \text{if } x > 400
\end{cases}
\]

- Find \(C(100), C(400),\) and \(C(480).\)
A Piecewise Defined Function

- Remember that a function is a rule.

- Here’s how we apply the rule for this function.
 - First, we look at the value of the input x.
 - If $0 \leq x \leq 400$, then the value of $C(x)$ is: 39
 - However, if $x > 400$, then the value of $C(x)$ is:
 - $39 + 0.2(x - 400)$
Since $100 \leq 400$, we have $C(100) = 39$.

Since $400 \leq 400$, we have $C(400) = 39$.

Since $480 > 400$, we have $C(480) = 39 + 0.2(480 - 400) = 55$.

Thus, the plan charges: 39 for 100 minutes, 39 for 400 minutes, and 55 for 480 minutes.
The Weight of an Astronaut

- If an astronaut weighs 130 pounds on the surface of the earth, then her weight when she is h miles above the earth is given by the function

$$w(h) = 130 \left(\frac{3960}{3960 + h} \right)^2$$
The Weight of an Astronaut

- (a) What is her weight when she is 100 mi above the earth?

- (b) Construct a table of values for the function \(w \) that gives her weight at heights from 0 to 500 mi.

 - What do you conclude from the table?
E.g. 5—The Weight of an Astronaut

- We want the value of the function w when $h = 100$.
- That is, we must calculate $w(100)$.

$$w(100) = 130 \left(\frac{3960}{3960 + 100} \right)^2 \approx 123.67$$

- So, at a height of 100 mi, she weighs about 124 lb.
The Weight of an Astronaut

- The table gives the astronaut’s weight, rounded to the nearest pound, at 100-mile increments.
 - The values are calculated as in part (a).
 - The table indicates that, the higher the astronaut travels, the less she weighs.

<table>
<thead>
<tr>
<th>h</th>
<th>$w(h)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>130</td>
</tr>
<tr>
<td>100</td>
<td>124</td>
</tr>
<tr>
<td>200</td>
<td>118</td>
</tr>
<tr>
<td>300</td>
<td>112</td>
</tr>
<tr>
<td>400</td>
<td>107</td>
</tr>
<tr>
<td>500</td>
<td>102</td>
</tr>
</tbody>
</table>
The Weight of an Astronaut

- The table is the precursor to visualizing the data as a graph.
- The graph will help you see the valid values of the function.
- For example, this shows you that the weight is inversely proportional to the altitude, the higher you go, the less you weigh.

<table>
<thead>
<tr>
<th>h</th>
<th>$w(h)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>130</td>
</tr>
<tr>
<td>100</td>
<td>124</td>
</tr>
<tr>
<td>200</td>
<td>118</td>
</tr>
<tr>
<td>300</td>
<td>112</td>
</tr>
<tr>
<td>400</td>
<td>107</td>
</tr>
<tr>
<td>500</td>
<td>102</td>
</tr>
</tbody>
</table>
The Domain of a Function

THINK INPUT TO THE COMPUTER (THE FUNCTION MACHINE)
Recall that the domain of a function is the set of all inputs for the function.

- The domain of a function may be stated explicitly.

- For example, if we write
 - \(f(x) = x^2, \quad 0 \leq x \leq 5 \)
 - then the domain is the set of all real numbers \(x \) for which \(0 \leq x \leq 5 \).
Domain of a Function

- If the function is given by an algebraic expression and the domain is not stated explicitly, then, by convention, the domain of the function is:
 - The domain of the algebraic expression—that is, the set of all real numbers for which the expression is defined as a real number.
Domain of a Function

For example, consider the functions

\[f(x) = \frac{1}{x - 4} \quad g(x) = \sqrt{x} \]

- The function \(f \) is not defined at \(x = 4 \). So, its domain is \(\{x \mid x \neq 4\} \).

- The function \(g \) is not defined for negative \(x \). So, its domain is \(\{x \mid x \neq 0\} \).
Finding Domains of Functions

- Find the domain of each function.

(a) \(f(x) = \frac{1}{x^2 - x} \)

(b) \(g(x) = \sqrt{9 - x^2} \)

(c) \(h(t) = \frac{t}{\sqrt{t + 1}} \)
Finding Domains

- The function is not defined when the denominator is 0.

 ◦ Since

 \[f(x) = \frac{1}{x^2 - x} = \frac{1}{x(x - 1)} \]

 we see that \(f(x) \) is not defined when \(x = 0 \) or \(x = 1 \).
Finding Domains

- Thus, the domain of \(f \) is:
 \[
 \{ x \mid x \neq 0, x \neq 1 \}
 \]

- The domain may also be written in interval notation as:
 \[
 (\infty, 0) \
 (0, 1) \
 (1, \infty)
 \]
Finding Domains

- We can’t take the square root of a negative number.
- So, we must have $9 - x^2 \geq 0$.

 - Using the methods of Section 1.6, we can solve this inequality to find that:
 - $-3 \leq x \leq 3$
 - Thus, the domain of g is:
 - $\{x \mid -3 \leq x \leq 3\} = [-3, 3]$
Finding Domains

- We can’t take the square root of a negative number, and we can’t divide by 0.

- So, we must have \(t + 1 > 0 \), that is, \(t > -1 \).

 - Thus, the domain of \(h \) is:

 \[
 \{ t \mid t > -1 \} = (-1, \infty)
 \]
• Four Ways to Represent a Function
Four Ways to Represent a Function

To help us understand what a function is, we have used:

- Machine diagram
- Arrow diagram
We can describe a specific function in these ways:

- Verbally (a description in words)
- Algebraically (an explicit formula)
- Visually (a graph)
- Numerically (a table of values)
A single function may be represented in all four ways.

- It is often useful to go from one representation to another to gain insight into the function.
- However, certain functions are described more naturally by one method than by the others.
Verbal Representation

- An example of a verbal description is the following rule for converting between temperature scales:
 - “To find the Fahrenheit equivalent of a Celsius temperature, multiply the Celsius temperature by 9/5, then add 32.”
 - In Example 7, we see how to describe this verbal rule or function algebraically, graphically, and numerically.
A useful representation of the area of a circle as a function of its radius is the algebraic formula

\[A(r) = \pi r^2 \]
Visual Representation

- The graph produced by a seismograph is a visual representation of the vertical acceleration function $a(t)$ of the ground during an earthquake.
Verbal Representation

Finally, consider the function $C(w)$.

- It is described verbally as:

 “the cost of mailing a first-class letter with weight w."

The most convenient way of describing this function is numerically—using a table of values.

<table>
<thead>
<tr>
<th>w (ounces)</th>
<th>$C(w)$ (dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 < w \leq 1$</td>
<td>1.13</td>
</tr>
<tr>
<td>$1 < w \leq 2$</td>
<td>1.30</td>
</tr>
<tr>
<td>$2 < w \leq 3$</td>
<td>1.47</td>
</tr>
<tr>
<td>$3 < w \leq 4$</td>
<td>1.64</td>
</tr>
<tr>
<td>$4 < w \leq 5$</td>
<td>1.81</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Representing a Function in Four Ways

- Let $F(C)$ be the Fahrenheit temperature corresponding to the Celsius temperature C.
 - Thus, F is the function that converts Celsius inputs to Fahrenheit outputs.
 - We have already seen the verbal description of this function.
Representing a Function in Four Ways

- Find way to represent this function
- Algebraically (using a formula)
- Numerically (using a table of values)
- Visually (using a graph)
Representing a Function

- The verbal description tells us that we first multiply the input C by $\frac{9}{5}$ and then add 32 to the result.

- So we get

$$F(C) = \frac{9}{5}C + 32$$
Representing a Function

- We use the algebraic formula for F that we found in part (a) to construct a table of values.

<table>
<thead>
<tr>
<th>C (Celsius)</th>
<th>F (Fahrenheit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
</tr>
</tbody>
</table>
Representing a Function

- We use the points tabulated in part (b) to help us draw the graph of this function.