1.6 Inequalities

Inequalities

- Some problems in algebra lead to inequalities instead of equations.
- An inequality looks just like an equation—except that, in the place of the equal sign is one of these symbols: <, >, ≤, or ≥.

• Here is an example: $4x + 7 \le 19$

Inequalities

The table shows that some numbers satisfy the inequality and some numbers don't.

- To solve an inequality that contains a variable means to find all values of the variable that make the inequality true.
 - Unlike an equation, an inequality generally has infinitely many solutions.
 - These form an interval or a union of intervals on the real line.

The following illustration shows how an inequality differs from its corresponding equation:

		Solution	Graph
Equation:	4x + 7 = 19	x = 3	$\begin{array}{c c} & & & \\ \hline & & \\ 0 & & 3 \end{array}$
Inequality:	$4x + 7 \le 19$	$x \leq 3$	

To solve inequalities, we use the following rules to isolate the variable on one side of the inequality sign.

- These rules tell us when two inequalities are equivalent (means "is equivalent to").
- In these rules, the symbols A, B, and C stand for real numbers or algebraic expressions.

Here, we state the rules for inequalities involving the symbol ≤.

• However, they apply to all four inequality symbols.

Rules for Inequalities	
Rule	Description
1. $A \leq B \iff A + C \leq B + C$	Adding the same quantity to each side of an inequality gives an equivalent inequality.
2. $A \leq B \iff A - C \leq B - C$	Subtracting the same quantity from each side of an in- equality gives an equivalent inequality.
3. If $C > 0$, then $A \le B \iff CA \le CB$	Multiplying each side of an inequality by the same <i>posi</i> - <i>tive</i> quantity gives an equivalent inequality.
4. If $C < 0$, then $A \le B \iff CA \ge CB$	Multiplying each side of an inequality by the same <i>nega</i> - <i>tive</i> quantity <i>reverses the direction</i> of the inequality.
5. If $A > 0$ and $B > 0$, then $A \le B \iff \frac{1}{A} \ge \frac{1}{B}$	Taking reciprocals of each side of an inequality involving <i>positive</i> quantities <i>reverses the direction</i> of the inequality.
6. If $A \le B$ and $C \le D$, then $A + C \le B + D$	Inequalities can be added.

Pay special attention to Rules 3 and 4.

- Rule 3 says that we can multiply (or divide) each side of an inequality by a positive number.
- However, Rule 4 says that, if we multiply each side of an inequality by a negative number, then we reverse the direction of the inequality.

• For example, if we start with the inequality

3 < 5
and multiply by 2, we get:
6 < 10

However, if we multiply by -2, we get:

-6 > -10

Solving Linear Inequalities

Linear Inequalities

An inequality is linear if:

• Each term is constant or a multiple of the variable.

To solve a linear inequality, we isolate the variable on one side of the inequality sign.

E.g. 1—Solving a Linear Inequality

Solve the inequality

3x < 9x + 4

and sketch the solution set.

E.g. 1—Solving a Linear Inequality

3x < 9x + 4	
3x - 9x < 9x + 4 - 9x	(Subtract 9x)
-6x < 4	(Simplify)
(-1/6)(-6x) > (-1/6)(4)	(Multiply by –1/6 or divide by –6
x > -2/3	(Simplify)

▶ The solution set consists of all numbers greater than −2/3.

E.g. 1—Solving a Linear Inequality

In other words, the solution of the inequality is the interval (-2/3, ∞).

E.g. 2—Solving a Pair of Simultaneous Inequalities

Solve the inequalities $4 \le 3x - 2 \le 13$

The solution set consists of all values of x that satisfy both of the inequalities

 $4 \le 3x - 2$ and 3x - 2 < 13

E.g. 2—Solving a Pair of Simultaneous Inequalities

• Using Rules I and 3, we see that these inequalities are equivalent:

•
$$4 \le 3x - 2 < |3|$$

• $6 \le 3x < |5|$ (Add 2)
 $2 \le x < 5$ (Divide by 3)

E.g. 2—Solving a Pair of Simultaneous Inequalities

Therefore, the solution set is [2, 5)

Solving Nonlinear Inequalities

Nonlinear Inequalities

To solve inequalities involving squares and other powers, we use factoring, together with the following principle.

The Sign of a Product or Quotient

- If a product or a quotient has an even number of negative factors, then its value is positive.
- If a product or a quotient has an odd number of negative factors, then its value is negative.

Solving Nonlinear Inequalities

- For example, to solve the inequality $x^2 5x \le -6$
- We first move all the terms to the left-hand side and factor to get

$$(x-2)(x-3) \leq 0$$

• This form of the inequality says that the product (x-2)(x-3) must be negative or zero.

Solving Nonlinear Inequalities

- So to solve the inequality, we must determine where each factor is negative or positive.
 - This is because the sign of a product depends on the sign of the factors.
 - The details are explained in Example 3, in which we use the following guidelines.

Guidelines for Solving Nonlinear Inequalities

- Example 3 illustrates the following guidelines for solving an inequality that can be factored.
 - I. Move all terms to one side.
 - 2. Factor.
 - 3. Find the intervals.
 - 4. Make a table or diagram.
 - 5. Solve.

Guideline 1 for Solving Nonlinear Inequalities

Move all terms to one side.

- If necessary, rewrite the inequality so that all nonzero terms appear on one side of the inequality sign.
- If the nonzero side of the inequality involves quotients, bring them to a common denominator.

Guideline 2 for Solving Nonlinear Inequalities

Factor the nonzero side of the inequality.

Guideline 3 for Solving Nonlinear Inequalities

Find the intervals.

- > Determine the values for which each factor is zero.
- > These numbers will divide the real line into intervals.
- List the intervals determined by these numbers.

Guideline 4 for Solving Nonlinear Inequalities

Make a table or diagram.

- Use test values to make a table or diagram of the signs of each factor on each interval.
- In the last row of the table, determine the sign of the product (or quotient) of these factors.

Guideline 5 for Solving Nonlinear Inequalities

- Determine the solution of the inequality from the last row of the sign table.
- Be sure to check whether the inequality is satisfied by some or all of the endpoints of the intervals.
- This may happen if the inequality involves \leq or \geq .

Guidelines for Solving Nonlinear Inequalities

- The factoring technique described in these guidelines works only if all nonzero terms appear on one side of the inequality symbol.
 - If the inequality is not written in this form, first rewrite it—as indicated in Step 1.

Solve the inequality $x^2 \le 5x - 6$

First, we move all the terms to the left-hand side $x^2 - 5x + 6 \le 0$

Factoring the left side of the inequality, we get $(x-2)(x-3) \le 0$

The factors of the left-hand side are x - 2 and x - 3.

▶ These factors are zero when x is 2 and 3, respectively.

As shown, the numbers 2 and 3 divide the real line into three intervals:

- The factors x 2 and x 3 change sign only at 2 and 3, respectively.
 - > So, they maintain their signs over the length of each interval.

- On each interval, we determine the signs of the factors using test values.
 - We choose a number inside each interval and check the sign of the factors x – 2 and x – 3 at the value selected.

For instance, let's use the test value x = 1 for the interval (- ∞ , 2).

Then, substitution in the factors x – 2 and x – 3 gives:

•
$$x - 2 = |-2 = -| < 0$$

and

▶
$$x - 3 = 1 - 3 = -2 < 0$$

- > So, both factors are negative on this interval.
- Notice that we need to check only one test value for each interval because the factors x 2 and

x - 3 do not change sign on any of the three intervals we found.

E.g. 3—A Quadratic Inequality
Using the test values x = 2½ and x = 4 for the intervals (2, 3) and (3, ∞), respectively, we construct the following sign table.

The final row is obtained from the fact that the expression in the last row is the product of the two factors.

Interval	(-∞, 2)	(2, 3)	$(3,\infty)$
Sign of $x - 2$	—	+	+
Sign of $x - 3$	—	_	+
Sign of $(x - 2)(x - 3)$	+	—	+

E.g. 3—A Quadratic Inequality If you prefer, you can represent that information on a real number line—as in this sign diagram.

• The vertical lines indicate the points at which the real line is divided into intervals.

		2	3
Sign of $x - 2$	_	+	+
Sign of $x - 3$	_	_	+
Sign of $(x - 2)(x - 3)$	+	—	+

• We read from the table or the diagram that (x-2)(x-3) is negative on the interval

()	3 /
(2,	J <i>J</i> .

		2 3	3
Sign of $x - 2$	-	+	+
Sign of $x - 3$	_	—	+
Sign of $(x - 2)(x - 3)$	+	—	+

Interval	$(-\infty, 2)$	(2, 3)	$(3,\infty)$
Sign of $x - 2$ Sign of $x - 3$	_	+ _	+ +
Sign of $(x - 2)(x - 3)$	+		+

- Thus, the solution of the inequality $(x-2)(x-3) \le 0$ is: $\{x \mid 2 \le x \le 3\} = [2, 3]$
 - We have included the endpoints 2 and 3 because we seek values of x such that the product is either less than or equal to zero.

The solution is illustrated here.

Solve the inequality $2x^2 - x > 1$

- First, we move all the terms to the left-hand side $2x^2 x 1 > 0$
- Factoring the left side of the inequality, we get (2x + 1)(x 1) > 0

The factors of the left-hand side are 2x + 1 and x - 1.

- These factors are zero when x is -1/2 and 1, respectively.
- These numbers divide the real line into the intervals (-∞, -1/2), (-1/2, 1), (1, ∞)

We make the following diagram, using test points to determine the sign of each factor in each interval.

- From the diagram, we see that

 (2x + 1)(x − 1) > 0

 for x in the interval (-∞, -1/2) or (1, ∞).
 - So the solution set is the union of these two intervals:

$$(-\infty, -1/2) \cup (1, \infty)$$

The solution is illustrated here.

E.g. 5—Solving an Inequality with Repeated Factors

Solve the inequality $x(x - I)^2(x - 3) < 0$

- All nonzero terms are already on one side of the inequality.
- Also, the nonzero side of the inequality is already factored.
- So we begin by finding the intervals for this inequality.

E.g. 5—Solving an Inequality with Repeated Factors

The factors of the left-hand side are $x, (x - 1)^2$, and x - 3.

• These factors are zero when x = 0, 1, 3.

These numbers divide the real line into the intervals (-∞, 0), (0, 1), (1, 3), (3, ∞)

Modeling with Inequalities

Modeling with Inequalities

 Modeling real-life problems frequently leads to inequalities.

• We are often interested in determining when one quantity is more (or less) than another.

- A carnival has two plans for tickets.
- Plan A: \$5 entrance fee and 25¢ each ride
- Plan B: \$2 entrance fee and 50¢ each ride
 - How many rides would you have to take for plan A to be less expensive than plan B?

We are asked for the number of rides for which plan A is less expensive than plan B.

So, let:

x = number of rides

The information in the problem may be organized as follows.

In Words	In Algebra
Number of rides	X
Cost with Plan A	5 + 0.25 <i>x</i>
Cost with Plan B	2 + 0.50 <i>x</i>

Now, we set up the model.

 So, if you plan to take more than 12 rides, plan A is less expensive.

E.g. 8—Fahrenheit and Celsius Scales

- The instructions on a box of film indicate that the box should be stored at a temperature between 5°C and 30°C.
 - What range of temperatures does this correspond to on the Fahrenheit scale?

E.g. 8—Fahrenheit and Celsius Scales
The relationship between degrees Celsius (C) and degrees Fahrenheit (F) is given by:

•
$$C = 5/9(F - 32)$$

Expressing the statement on the box in terms of inequalities, we have:

5 < *C* < 30

E.g. 8—Fahrenheit and Celsius Scales
So, the corresponding Fahrenheit temperatures satisfy the inequalities

 $5 < \frac{5}{9}(F - 32) < 30$ $\frac{9}{5} \cdot 5 < F - 32 < \frac{9}{5} \cdot 30$ (Multiply by $\frac{9}{5}$) 9 < F - 32 < 54 (Simplify) 9 + 32 < F < 54 + 32 (Add 32) 41 < F < 86 (Simplify)

E.g. 8—Fahrenheit and Celsius Scales Thus, the film should be stored at a temperature between 41°F and 86°F.

