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Enumerated Data Types are ADTs

· An enumerated data type is a programmer-defined data type

General Format
enum TypeName {One or more enumerators};

Example
enum Day {MON, TUE, WED, THU, FRI, SAT, SUN};
Day day;
day = MON;

· The enumerators are integer constants the compiler assigns 
starting with 0 unless otherwise specified
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Enumerated Data Types

Day day;

int whatDay, indx;

• day = 3; // illegal

• whatDay = TUE; // legal

• if (day > WED) // legal

• for (indx = MON; indx <= SUN; ++indx) // legal

• day = static_cast<Day> (day + 1);  // legal
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The logical conclusion...

Effective Modern C++, Meyers, Item 10



C++11 Scoped Enum
● Goals

● better type checking
● less name pollution

http://www.stroustrup.com/C++11FAQ.html#enum



Declaration

enum class NAME : TYPESPECIFIER { LIST };

Still no easy way to print an enum value :(

http://en.cppreference.com/w/cpp/language/enum



Namespaces
● Keep your declared names 

inside a restricted scope

● Reduce name collisions
● what if two libraries both provide the 

function
int *quartiles(int *paData, int size);
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Example



using



Notes
● The same namespace can be spread across 

many header files

● namespace std is defined in:
● iostream
● vector
● memory

● This allows you to only include the piece of the 
namespace you need.



Useful to package classes
● Prefer non-member, non-friend functions to 

member functions*
● If a non-member, non-friend function can do the 

work, what does that tell me about the class's 
interface?

*Effective C++, Third Edition, Meyers,
Item 23

namespace Example
{
  class BigResponsibilities  { ... } ;

  void helpfulFunction(BigResponsibilities &);
}



Exceptions
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Exceptions
● Signal an error has occurred

● Predefined exceptions

http://en.cppreference.com/w/cpp/language/exceptions

http://en.cppreference.com/w/cpp/error/exception



http://en.cppreference.com/w/cpp/header/exception



Oh no
● std::terminate

● std::unexpected (until c++17)

*http://en.cppreference.com/w/cpp/error/terminate

http://en.cppreference.com/w/cpp/error/unexpected



Example

Uncaught Exception Caught Exception

http://en.cppreference.com/w/cpp/language/try_catch





Throw

Empty throw; just rethrows the current exception (must be in try/catch block)

http://en.cppreference.com/w/cpp/language/throw



dynamic runtime check



noexcept specifier 
● Mark whether or not your function can throw an 

exception --  or allow an exception to be 
propagated from any other function that it 
invokes either directly or indirectly.

● Violation of this leads to termination, std::terminate
non-throwing functions*
 
● marked noexcept 
● destructors
● default constructors, copy constructors, move constructors
● copy assignment operators, move assignment operators
● deallocation functions (delete)

→ except that there are many caveats and qualifications



References for the previous slide

http://en.cppreference.com/w/cpp/language/noexcept_spec

https://akrzemi1.wordpress.com/2014/04/24/noexcept-what-for/

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2855.html#problem

http://www.stroustrup.com/C++11FAQ.html#noexcept

http://en.cppreference.com/w/cpp/error/terminate



Exception Safety guarantees
● No-throw/No-fail

● Strong exception safety

● Basic exception safety

● No exception safety

https://msdn.microsoft.com/en-us/library/hh279653.aspx



Risks
● Throwing from a destructor

● Options

*Effective C++, Third Edition, Meyers,
Item 11
More Effective C++, Third Edition, 
Meyers, p45-80



Risks

Which destructors are called?



Risks

Which destructors are called?



Mitigation

Which destructors are called?



Constructors

Solution?
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