

CS 485
Advanced Object Oriented Design

Enum

Spring 2019

http://www.netobjectives.com/PatternRepository/index.php?title=PatternsByAlphabet

http://www.netobjectives.com/files/books/dpe/design-patterns-matrix.pdf

CS485_Student_Examples/06_EnumClass

Enumerated Data Types are ADTs

· An enumerated data type is a programmer-defined data type

General Format
enum TypeName {One or more enumerators};

Example
enum Day {MON, TUE, WED, THU, FRI, SAT, SUN};
Day day;
day = MON;

· The enumerators are integer constants the compiler assigns
starting with 0 unless otherwise specified

Spring 2016 CS250 - Intro to CS II 2

CS 250

Enumerated Data Types

Day day;

int whatDay, indx;

• day = 3; // illegal

• whatDay = TUE; // legal

• if (day > WED) // legal

• for (indx = MON; indx <= SUN; ++indx) // legal

• day = static_cast<Day> (day + 1); // legal

Spring 2016 CS250 - Intro to CS II 3

CS 250

CS 250

The logical conclusion...

Effective Modern C++, Meyers, Item 10

C++11 Scoped Enum
● Goals

● better type checking
● less name pollution

http://www.stroustrup.com/C++11FAQ.html#enum

Declaration

enum class NAME : TYPESPECIFIER { LIST };

Still no easy way to print an enum value :(

http://en.cppreference.com/w/cpp/language/enum

Namespaces
● Keep your declared names

inside a restricted scope

● Reduce name collisions
● what if two libraries both provide the

function
int *quartiles(int *paData, int size);

CS485_Student_Examples/06_NamespaceExample

Example

using

Notes
● The same namespace can be spread across

many header files

● namespace std is defined in:
● iostream
● vector
● memory

● This allows you to only include the piece of the
namespace you need.

Useful to package classes
● Prefer non-member, non-friend functions to

member functions*
● If a non-member, non-friend function can do the

work, what does that tell me about the class's
interface?

*Effective C++, Third Edition, Meyers,
Item 23

namespace Example
{
 class BigResponsibilities { ... } ;

 void helpfulFunction(BigResponsibilities &);
}

Exceptions

CS485_Student_Examples/06_ExceptionExample

Exceptions
● Signal an error has occurred

● Predefined exceptions

http://en.cppreference.com/w/cpp/language/exceptions

http://en.cppreference.com/w/cpp/error/exception

http://en.cppreference.com/w/cpp/header/exception

Oh no
● std::terminate

● std::unexpected (until c++17)

*http://en.cppreference.com/w/cpp/error/terminate

http://en.cppreference.com/w/cpp/error/unexpected

Example

Uncaught Exception Caught Exception

http://en.cppreference.com/w/cpp/language/try_catch

Throw

Empty throw; just rethrows the current exception (must be in try/catch block)

http://en.cppreference.com/w/cpp/language/throw

dynamic runtime check

noexcept specifier
● Mark whether or not your function can throw an

exception -- or allow an exception to be
propagated from any other function that it
invokes either directly or indirectly.

● Violation of this leads to termination, std::terminate
non-throwing functions*

● marked noexcept
● destructors
● default constructors, copy constructors, move constructors
● copy assignment operators, move assignment operators
● deallocation functions (delete)

→ except that there are many caveats and qualifications

References for the previous slide

http://en.cppreference.com/w/cpp/language/noexcept_spec

https://akrzemi1.wordpress.com/2014/04/24/noexcept-what-for/

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2855.html#problem

http://www.stroustrup.com/C++11FAQ.html#noexcept

http://en.cppreference.com/w/cpp/error/terminate

Exception Safety guarantees
● No-throw/No-fail

● Strong exception safety

● Basic exception safety

● No exception safety

https://msdn.microsoft.com/en-us/library/hh279653.aspx

Risks
● Throwing from a destructor

● Options

*Effective C++, Third Edition, Meyers,
Item 11
More Effective C++, Third Edition,
Meyers, p45-80

Risks

Which destructors are called?

Risks

Which destructors are called?

Mitigation

Which destructors are called?

Constructors

Solution?

	Slide 1
	Enumerated Data Types are ADTs
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

