CS 485: Assignment 2 45 points: Execution: 18 pts, Coding Standards: 9 pts, Design 18 points

Assigned: Feb 18.

DUE: UML Diagram DRAFT, Wednesday, Feb 20, 3:30pm (Hard Copy)
Bank Accounts DUE: UML Diagram, THURSDAY Feb 21, 3:00pm (Hard Copy)
DUE: Completed Solution, Mar 1, 3:30pm

Goals for this assignment

Practice your Object Oriented Design Skills
Practice your UML design skills

Practice new C++ syntax and idioms
Review your CS 250 C++ Notes

This is not an SDL application

e wN e

We need a system that will support the backend operation of an online bank.

You need to represent both savings accounts and checking accounts. Both types of accounts have an
account number and a balance. The account number for an account must never change. You do not
need to represent a bank patron.

Each account type allows for deposits and withdraws to update the balance. A checking account has a
minimum balance required to be kept at all times (this minimum balance is specific to a particular
account and never changes for that account). If a transaction is made that moves the balance below the
minimum balance or keeps the balance below the minimum balance, a fee is charged against the
account. This minimum balance fee is specific to each checking account. The fee cannot incur a further
fee. Account balances are allowed to be negative.

A savings account has a monthly fee. The fee is charged once a month (at the same time interest is
generated), only if the savings account balance ever (since the previous round of interest generation)
goes below (or stays below) a minimum balance as the result of a transaction or if the minimum
monthly balance is not maintained at the time the interest is generated. The minimum monthly balance
and monthly fee is specific to each savings account.

Both types of accounts accrue interest. An account has a single, set interest rate. No interest is applied
to an account that has a negative balance. Interest deposits never cause a fee.

Store money as a long long and store money as pennies. All calculations with money must truncate
(round down) to produce an integer.
long long amt = 100; // one dollar.

Your software will read the accounts from a file (Accounts.txt). Your software will also read the
commands from a file (Commands.txt) and process the commands in order. These files are specified
below.

You must produce a UML diagram of your design. The diagram must show inheritance, aggregation, and
composition. You may choose to show other connections. | strongly recommend you bring your UML
diagram to me for a review well before class on Feb 22. Use UMLet (http://umlet.com/) to produce
your diagram. Include the XML file output by UMLet in your Visual Studio solution (just save the XML
file into the Visual Studio project directory.)

Name your Visual Studio solution: CS485_Bank_punetid. Name your Visual Studio project: 01_Bank.
You must use Git or Subversion and share your repository details with the instructor.

Follow the coding standards posted on the class website. Be sure to use VLD to check for memory leaks.
For this assignment, you will not receive any bad data in the files.

You should be able to handle up to 100 accounts. You should be able to process an unlimited number of
commands.

Data File Format

Accounts.txt

S Acct# InitialBalance InterestRate MonthlyFee MinMonthlyBalance
C Acct# InitialBalance InterestRate MinBalance MinBalanceFee

Commands.txt

W Acct# Amt
D Acct# Amt
P
M

The possible Commands are:

W - Withdraw

D - Deposit

P - Print all accounts (in the same order they appear in Accounts.txt)

M - Charge monthly fees to savings accounts and Generate Interest in
all accounts (in that order).

Example Files

Accounts.txt

Expected Output

S 1 1000 0.01 100 200
C 2 1000 0.01 100 50

Commands.txt

2 10

110
2 10

2 960

1 900

UV=XTUVU=EU=ZTU=ZU0UDUOO0OU=Z=ZTUUXETDT

1, $le.10, 1.

.00%,
.00%,

.00%,
.00%,

.00%,
.00%,

.00%,
.00%,

00%,

100, 200
100, 50

100, 200
100, 50

100, 200
100, 50

100, 200
100, 50

100, 200

2, $0.00, 1.00%, 100, 50

1, $1.10, 1.00%, 100, 200
2, $0.00, 1.00%, 100, 50

1, $0.10, 1.00%, 100, 200
2, $0.00, 1.00%, 100, 50

1, $-0.90, 1.00%, 100, 200
2, $0.00, 1.00%, 100, 50

