

Model-View-Presenter

https://martinfowler.com/eaaDev/uiArchs.html

https://realm.io/news/eric-maxwell-mvc-mvp-and-mvvm-on-android/

https://github.com/ericmaxwell2003/ticTacToe

http://aspiringcraftsman.com/2007/08/25/interactive-application-architecture/

http://www.wildcrest.com/Potel/Portfolio/mvp.pdf

https://github.com/googlesamples/android-architecture/tree/todo-mvp

Original UI Applications

● Forms and Controls
– button, text box, ….

● Each control has and onClick()/onChange()

● Business logic and state is in the main UI and
scattered across the various onClick() methods

● Hard to reuse code
● Hard to move UIs
● Hard to automate testing

Model View Control

● GUI architecture pattern
● made up of many Design Patterns
● Goals

– separate underlying model from UI

– reuse of model for different UIs

– provide an easily tested interface

● Many slightly different definitions!

MVC
● Model

– Data, State, Business logic
– can interact directly with View when a state change occurs

● Observer Pattern

● View
– Visual representation of Model (UI)
– can interact directly with the View to retrieve data
– no smarts at all

● Controller
– “defines the way the UI reacts to user input” - Gang of Four

● Strategy Pattern

– often contains the main control loop

Often, MVC is done at the individual control level (text box, etc).

Benefits & Concerns

● Model and View are well separated
– loosely coupled

● multiple views on the same model

– well define Observer interface required

● Controller
– easy to change how the system responds to inpu

● Controller
– tightly tied to View

Model View Presenter

● Model
– same

– might directly update View via Observer or not

● View
– UI Loop here

– might update itself

● Presenter
– Only tied to View Interface

Model View Presenter

● Model
– Player, Money, SavingsAccount

● View
– Strings - all UI data are Strings

● Presenter
– Money → String

– String → Money

MVP workflow

Note:
TicTacToeSDL_View is a subclass of SDLApp and ITicTacToeView
TicTacToeView_TextUI is a subclass of TextUI and ITicTacToeView
These really should be Composition, not Inheritance relations! (version 2.0)

Example Code

● Tic Tac Toe
– Text Based

– SDL Based

● Model
– TicTacToeModel

– TicTacToeBoard

– TicTacToePlayer

Example Code

● Presenter
– What interface does

the View need?

– How do we need to
respond to changes
in the Model?

Example Code
● View

– What events can
happen?

– How should the
presenter notify us
of changes?

Sequence Diagram
● What order to the messages flow between

objects
– Shalloway, page 34, 44, 167

Interface Segregation

● Clients only need to know about methods that
interest them

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

