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Objects
● Old view

● "find the nouns and verbs" - many old OO design books

● still useful starting point

● limited view

● Data + responsibilities
● give your objects jobs to do



  

Example, p11, Shalloway

● Students moving around a conference
● structured programming* 

– The driver carefully directs each person to the next spot

● OO Design
– provide data on where each class is next
– people are responsible for knowing what their next class is
– people are responsible for finding their next location
– new classes, add new location data, assign people to class

– ask what you want, not tell how to do it.
● helps to insulate you from change.



  

Example, cont.
● OO Design

● people are responsible for movement, know their 
own type and location

● control program talks to everyone, does not need to 
know the difference, gives everyone the same 
instructions

● control program does not know about any special 
steps a type of person needs to take.



  

Design Perspectives
● Conceptual

● Specification

● Implementation



  

Design Principles
● Bad Design Principles:

● Good Design Principles
● Single Reponsiblity
● Open/Close
● Liskov's Substitution
● Interface Segregation
● Dependency Inversion

● https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

● http://www.oodesign.com/design-principles.html

● http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod



  

Exercise
● Find the classes! Find the responsibilities!

● CRC Cards
● Class-responsibility-collaboration

http://c2.com/doc/crc/draw.html

c2.com/doc/oopsla89/paper.html
Kent Beck & Ward Cunningham

http://userpages.umbc.edu/~cseaman/ifsm636/lect1108.pdf

http://www.cs.unc.edu/~stotts/145/CRC/crc.htmlhttp://agilemodeling.com/artifacts/crcModel.htm



  

Process
● Brainstorm

● find all the nouns and verbs

● Identify classes
● you'll throw a bunch away and add some back

● Role play
● run through various scenarios for the software
● use cases

http://userpages.umbc.edu/~cseaman/ifsm636/lect1108.pdf



  

Example - Shalloway, students at a conference

http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_517_Fall_2007/wiki2_5_kq

http://www.math-cs.gordon.edu/courses/cs211/ATMExample/CRCCards.html#CardReader
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Exercise

● We need a system that will support the operation of an 
online bank.

● The bank provides both savings and checking accounts.

●  Users must logon via a username and password and will 
be presented with their bank account data including 
current balances, transaction history, and current interest 
rate.  A user may have any number of accounts.

● Checking accounts earn a flat interest and they have a 
minimum balance required lest they incur penalty fees.

● Savings accounts earn interest based on their current 
balance (more $$ more higher interest rate).

● Some extremely old savings accounts earn a flat interest 
rate.



  

Example

● Work in assigned teams

● How would you break this down into classes?

● What would each class be responsible for?

● 30 minutes for Brainstorming

● 10 minutes for two scenarios.



  

Scenarios

● Sally needs to know what her current interest 
rate is on her highest balance savings account.

● Bob needs to know if the $150 check he just 
wrote is going to cost him a penalty.  He is not 
sure how many uncashed checks he has 
written.



  

Chapter 3 & 4
● Chapter 3

● lays out the CAD problem
● extract model from two different CAD systems

– procedural system
– object oriented system

● translate model into machine operations via expert system

● Chapter 4
● initial object oriented design
● brief discussion of the flaws of this design



  
Shalloway, p 63



  

Analysis - Successes
● One API for multiple backend CAD systems

● Each object has responsibilities



  

Analysis - Failures

● Everything is a special case

● Redundancy among methods

● Messy / Growth from change

● Tight Coupling / Weak cohesion
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