

CS 485
Advanced Object Oriented Design

Design

Spring 2017

Objects
● Old view

● "find the nouns and verbs" - many old OO design books

● still useful starting point

● limited view

● Data + responsibilities
● give your objects jobs to do

Example, p11, Shalloway

● Students moving around a conference
● structured programming*

– The driver carefully directs each person to the next spot

● OO Design
– provide data on where each class is next
– people are responsible for knowing what their next class is
– people are responsible for finding their next location
– new classes, add new location data, assign people to class

– ask what you want, not tell how to do it.
● helps to insulate you from change.

Example, cont.
● OO Design

● people are responsible for movement, know their
own type and location

● control program talks to everyone, does not need to
know the difference, gives everyone the same
instructions

● control program does not know about any special
steps a type of person needs to take.

Design Perspectives
● Conceptual

● Specification

● Implementation

Design Principles
● Bad Design Principles:

● Good Design Principles
● Single Reponsiblity
● Open/Close
● Liskov's Substitution
● Interface Segregation
● Dependency Inversion

● https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

● http://www.oodesign.com/design-principles.html

● http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Exercise
● Find the classes! Find the responsibilities!

● CRC Cards
● Class-responsibility-collaboration

http://c2.com/doc/crc/draw.html

c2.com/doc/oopsla89/paper.html
Kent Beck & Ward Cunningham

http://userpages.umbc.edu/~cseaman/ifsm636/lect1108.pdf

http://www.cs.unc.edu/~stotts/145/CRC/crc.htmlhttp://agilemodeling.com/artifacts/crcModel.htm

Process
● Brainstorm

● find all the nouns and verbs

● Identify classes
● you'll throw a bunch away and add some back

● Role play
● run through various scenarios for the software
● use cases

http://userpages.umbc.edu/~cseaman/ifsm636/lect1108.pdf

Example - Shalloway, students at a conference

http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_517_Fall_2007/wiki2_5_kq

http://www.math-cs.gordon.edu/courses/cs211/ATMExample/CRCCards.html#CardReader

Traveler

Responsibilities Collaborators

Know the current
location

Instructor

Know next classroom ClassroomMap

Move to next
classroom

Path

ClassroomMap

Responsibilities Collaborators

Know locations of
classrooms

Traveler

Find path between
Classrooms

Classroom

Path

Exercise

● We need a system that will support the operation of an
online bank.

● The bank provides both savings and checking accounts.

● Users must logon via a username and password and will
be presented with their bank account data including
current balances, transaction history, and current interest
rate. A user may have any number of accounts.

● Checking accounts earn a flat interest and they have a
minimum balance required lest they incur penalty fees.

● Savings accounts earn interest based on their current
balance (more $$ more higher interest rate).

● Some extremely old savings accounts earn a flat interest
rate.

Example

● Work in assigned teams

● How would you break this down into classes?

● What would each class be responsible for?

● 30 minutes for Brainstorming

● 10 minutes for two scenarios.

Scenarios

● Sally needs to know what her current interest
rate is on her highest balance savings account.

● Bob needs to know if the $150 check he just
wrote is going to cost him a penalty. He is not
sure how many uncashed checks he has
written.

Chapter 3 & 4
● Chapter 3

● lays out the CAD problem
● extract model from two different CAD systems

– procedural system
– object oriented system

● translate model into machine operations via expert system

● Chapter 4
● initial object oriented design
● brief discussion of the flaws of this design

Shalloway, p 63

Analysis - Successes
● One API for multiple backend CAD systems

● Each object has responsibilities

Analysis - Failures

● Everything is a special case

● Redundancy among methods

● Messy / Growth from change

● Tight Coupling / Weak cohesion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

